456 research outputs found
Flavour structure of low-energy hadron pair photoproduction
We consider the process where and
are either mesons or baryons. The experimental findings for such quantities as
the and differential cross sections, in the energy range
currently probed, are found often to be in disparity with the scaling behaviour
expected from hard constituent scattering. We discuss the long-distance
pole--resonance contribution in understanding the origin of these phenomena, as
well as the amplitude relations governing the short-distance contribution which
we model as a scaling contribution. When considering the latter, we argue that
the difference found for the and the integrated cross
sections can be attributed to the s-channel isovector component. This
corresponds to the subprocess in the VMD
(vector-meson-dominance) language. The ratio of the two cross sections is
enhanced by the suppression of the component, and is hence constrained.
We give similar constraints to a number of other hadron pair production
channels. After writing down the scaling and pole--resonance contributions
accordingly, the direct summation of the two contributions is found to
reproduce some salient features of the and data.Comment: 12 pages, 9 figures, revised version to be published in EPJ
Factorizing the hard and soft spectator scattering contributions for the nucleon form factor F_1 at large Q^2
We investigate the soft spectator scattering contribution for the FF .
We focus our attention on factorization of the hard-collinear scale corresponding to transition from SCET-I to SCET-II. We compute the
leading order jet functions and find that the convolution integrals over the
soft fractions are logarithmically divergent. This divergency is the
consequence of the boost invariance and does not depend on the model of the
soft correlation function describing the soft spectator quarks. Using as
example a two-loop diagram we demonstrated that such a divergency corresponds
to the overlap of the soft and collinear regions. As a result one obtains large
rapidity logarithm which must be included in the correct factorization
formalism. We conclude that a consistent description of the factorization for
implies the end-point collinear divergencies in the hard and soft
spectator contributions, i.e. convolution integrals with respect to collinear
fractions are not well-defined. Such scenario can only be realized when the
twist-3 nucleon distribution amplitude has specific end-point behavior which
differs from one expected from the evolution of the nucleon distribution
amplitude. Such behavior leads to the violation of the collinear factorization
for the hard spectator scattering contribution. We suggest that the soft
spectator scattering and chiral symmetry breaking provide the mechanism
responsible for the violation of collinear factorization in case of form factor
.Comment: 25 pages, 6 figures, text is improved, few typos corrected, one
figure added, statement about end-point behavior of the nucleon DA is
formulated more accuratel
Forward Jets and Energy Flow in Hadronic Collisions
We observe that at the Large Hadron Collider, using forward + central
detectors, it becomes possible for the first time to carry out calorimetric
measurements of the transverse energy flow due to "minijets" accompanying
production of two jets separated by a large rapidity interval. We present
parton-shower calculations of energy flow observables in a high-energy
factorized Monte Carlo framework, designed to take into account QCD logarithmic
corrections both in the large rapidity interval and in the hard transverse
momentum. Considering events with a forward and a central jet, we examine the
energy flow in the interjet region and in the region away from the jets. We
discuss the role of these observables to analyze multiple parton collision
effects.Comment: 9 pages, 5 figures. Version2: added results on azimuthal
distributions and more discussion of energy flow definition using jet
clusterin
Search for single top quarks in the tau+jets channel using 4.8 fb of collision data
We present the first direct search for single top quark production using tau
leptons. The search is based on 4.8 fb of integrated luminosity
collected in collisions at =1.96 TeV with the D0 detector
at the Fermilab Tevatron Collider. We select events with a final state
including an isolated tau lepton, missing transverse energy, two or three jets,
one or two of them tagged. We use a multivariate technique to discriminate
signal from background. The number of events observed in data in this final
state is consistent with the signal plus background expectation. We set in the
tau+jets channel an upper limit on the single top quark cross section of
\TauLimObs pb at the 95% C.L. This measurement allows a gain of 4% in expected
sensitivity for the observation of single top production when combining it with
electron+jets and muon+jets channels already published by the D0 collaboration
with 2.3 fb of data. We measure a combined cross section of
\SuperCombineXSall pb, which is the most precise measurement to date.Comment: 12 pages, 5 figure
Measurement of Z/gamma*+jet+X angular distributions in ppbar collisions at sqrt{s}=1.96 TeV
We present the first measurements at a hadron collider of differential cross
sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and
|y_boost(Z, jet)|. Vector boson production in association with jets is an
excellent probe of QCD and constitutes the main background to many small cross
section processes, such as associated Higgs production. These measurements are
crucial tests of the predictions of perturbative QCD and current event
generators, which have varied success in describing the data. Using these
measurements as inputs in tuning event generators will increase the
experimental sensitivity to rare signals.Comment: Published in Physics Letters B 682 (2010), pp. 370-380. 15 pages, 6
figure
Search for the standard model Higgs boson in tau final states
We present a search for the standard model Higgs boson using hadronically
decaying tau leptons, in 1 inverse femtobarn of data collected with the D0
detector at the Fermilab Tevatron ppbar collider. We select two final states:
tau plus missing transverse energy and b jets, and tau+ tau- plus jets. These
final states are sensitive to a combination of associated W/Z boson plus Higgs
boson, vector boson fusion and gluon-gluon fusion production processes. The
observed ratio of the combined limit on the Higgs production cross section at
the 95% C.L. to the standard model expectation is 29 for a Higgs boson mass of
115 GeV.Comment: publication versio
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Search for W' bosons decaying to an electron and a neutrino with the D0 detector
This Letter describes the search for a new heavy charged gauge boson W'
decaying into an electron and a neutrino. The data were collected with the D0
detector at the Fermilab Tevatron proton-antiproton Collider at a
center-of-mass energy of 1.96 TeV, and correspond to an integrated luminosity
of about 1 inverse femtobarn. Lacking any significant excess in the data in
comparison with known processes, an upper limit is set on the production cross
section times branching fraction, and a W' boson with mass below 1.00 TeV can
be excluded at the 95% C.L., assuming standard-model-like couplings to
fermions. This result significantly improves upon previous limits, and is the
most stringent to date.Comment: submitted to Phys. Rev. Let
Search for a scalar or vector particle decaying into Zgamma in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for a narrow scalar or vector resonance decaying into
Zgamma with a subsequent Z decay into a pair of electrons or muons. The data
for this search were collected with the D0 detector at the Fermilab Tevatron
ppbar collider at a center of mass energy sqrt(s) = 1.96 TeV. Using 1.1 (1.0)
fb-1 of data, we observe 49 (50) candidate events in the electron (muon)
channel, in good agreement with the standard model prediction. From the
combination of both channels, we derive 95% C.L. upper limits on the cross
section times branching fraction (sigma x B) into Zgamma. These limits range
from 0.19 (0.20) pb for a scalar (vector) resonance mass of 600 GeV/c^2 to 2.5
(3.1) pb for a mass of 140 GeV/c^2.Comment: Published by Phys. Lett.
- …