1,971 research outputs found
Particle-in-cell simulations of electron acceleration by a simple capacitative antenna in collisionless plasma
We examine the electron acceleration by a localized electrostatic potential oscillating at high frequencies by means of particle‐in‐cell (PIC) simulations, in which we apply oscillating electric fields to two neighboring simulation cells. We derive an analytic model for the direct electron heating by the externally driven antenna electric field, and we confirm that it approximates well the electron heating obtained in the simulations. In the simulations, transient waves accelerate electrons in a sheath surrounding the antenna. This increases the Larmor radii of the electrons close to the antenna, and more electrons can reach the antenna location to interact with the externally driven fields. The resulting hot electron sheath is dense enough to support strong waves that produce high‐energy sounder‐accelerated electrons (SAEs) by their nonlinear interaction with the ambient electrons. By increasing the emission amplitudes in our simulations to values that are representative for the ones of the sounder on board the OEDIPUS C (OC) satellites, we obtain electron acceleration into the energy range which is comparable to the 20 keV energies of the SAE observed by the OC mission. The emission also triggers stable electrostatic waves oscillating at frequencies close to the first harmonic of the electron cyclotron frequency. We find this to be an encouraging first step of examining SAE generation with kinetic numerical simulation codes
Electric field generation by the electron beam filamentation instability: Filament size effects
The filamentation instability (FI) of counter-propagating beams of electrons
is modelled with a particle-in-cell simulation in one spatial dimension and
with a high statistical plasma representation. The simulation direction is
orthogonal to the beam velocity vector. Both electron beams have initially
equal densities, temperatures and moduli of their nonrelativistic mean
velocities. The FI is electromagnetic in this case. A previous study of a small
filament demonstrated, that the magnetic pressure gradient force (MPGF) results
in a nonlinearly driven electrostatic field. The probably small contribution of
the thermal pressure gradient to the force balance implied, that the
electrostatic field performed undamped oscillations around a background
electric field. Here we consider larger filaments, which reach a stronger
electrostatic potential when they saturate. The electron heating is enhanced
and electrostatic electron phase space holes form. The competition of several
smaller filaments, which grow simultaneously with the large filament, also
perturbs the balance between the electrostatic and magnetic fields. The
oscillations are damped but the final electric field amplitude is still
determined by the MPGF.Comment: 14 pages, 10 plots, accepted for publication in Physica Script
Quasi-perpendicular fast magnetosonic shock with wave precursor in collisionless plasma
A one-dimensional particle-in-cell (PIC) simulation tracks a fast
magnetosonic shock over time scales comparable to an inverse ion gyrofrequency.
The magnetic pressure is comparable to the thermal pressure upstream. The shock
propagates across a uniform background magnetic field with a pressure that
equals the thermal pressure upstream at the angle 85 at a speed that is
1.5 times the fast magnetosonic speed in the electromagnetic limit.
Electrostatic contributions to the wave dispersion increase its phase speed at
large wave numbers, which leads to a convex dispersion curve. A fast
magnetosonic precursor forms ahead of the shock with a phase speed that exceeds
the fast magnetosonic speed by about . The wave is slower than the
shock and hence it is damped.Comment: 4 pages, 3 figure
The filamentation instability driven by warm electron beams: Statistics and electric field generation
The filamentation instability of counterpropagating symmetric beams of
electrons is examined with 1D and 2D particle-in-cell (PIC) simulations, which
are oriented orthogonally to the beam velocity vector. The beams are uniform,
warm and their relative speed is mildly relativistic. The dynamics of the
filaments is examined in 2D and it is confirmed that their characteristic size
increases linearly in time. Currents orthogonal to the beam velocity vector are
driven through the magnetic and electric fields in the simulation plane. The
fields are tied to the filament boundaries and the scale size of the
flow-aligned and the perpendicular currents are thus equal. It is confirmed
that the electrostatic and the magnetic forces are equally important, when the
filamentation instability saturates in 1D. Their balance is apparently the
saturation mechanism of the filamentation instability for our initial
conditions. The electric force is relatively weaker but not negligible in the
2D simulation, where the electron temperature is set higher to reduce the
computational cost. The magnetic pressure gradient is the principal source of
the electrostatic field, when and after the instability saturates in the 1D
simulation and in the 2D simulation.Comment: 10 pages, 6 figures, accepted by the Plasma Physics and Controlled
Fusion (Special Issue EPS 2009
Simulation study of the filamentation of counter-streaming beams of the electrons and positrons in plasmas
The filamentation instability driven by two spatially uniform and
counter-streaming beams of charged particles in plasmas is modelled by a
particle-in-cell (PIC) simulation. Each beam consists of the electrons and
positrons. The four species are equally dense and they have the same
temperature. The one-dimensional simulation direction is orthogonal to the beam
velocity vector. The magnetic field grows spontaneously and rearranges the
particles in space, such that the distributions of the electrons of one beam
and the positrons of the second beam match. The simulation demonstrates that as
a result no electrostatic field is generated by the magnetic field through its
magnetic pressure gradient prior to its saturation. This electrostatic field
would be repulsive at the centres of the filaments and limit the maximum charge
and current density. The filaments of electrons and positrons in this
simulation reach higher charge and current densities than in one with no
positrons. The oscillations of the magnetic field strength induced by the
magnetically trapped particles result in an oscillatory magnetic pressure
gradient force. The latter interplays with the statistical fluctuations in the
particle density and it probably enforces a charge separation, by which
electrostatic waves grow after the filamentation instability has saturated.Comment: 13 pages, 8 figure
PIC Simulations of the Temperature Anisotropy-Driven Weibel Instability: Analyzing the perpendicular mode
An instability driven by the thermal anisotropy of a single electron species
is investigated in a 2D particle-in-cell (PIC) simulation. This instability is
the one considered by Weibel and it differs from the beam driven filamentation
instability. A comparison of the simulation results with analytic theory
provides similar exponential growth rates of the magnetic field during the
linear growth phase of the instability. We observe in accordance with previous
works the growth of electric fields during the saturation phase of the
instability. Some components of this electric field are not accounted for by
the linearized theory. A single-fluid-based theory is used to determine the
source of this nonlinear electric field. It is demonstrated that the magnetic
stress tensor, which vanishes in a 1D geometry, is more important in this
2-dimensional model used here. The electric field grows to an amplitude, which
yields a force on the electrons that is comparable to the magnetic one. The
peak energy density of each magnetic field component in the simulation plane
agrees with previous estimates. Eddy currents develop, which let the amplitude
of the third magnetic field component grow, which is not observed in a 1D
simulation.Comment: accepted by Plasma Physics and Controlled Fusio
Shock creation and particle acceleration driven by plasma expansion into a rarefied medium
The expansion of a dense plasma through a more rarefied ionised medium is a
phenomenon of interest in various physics environments ranging from
astrophysics to high energy density laser- matter laboratory experiments. Here
this situation is modeled via a 1D Particle-In-Cell simulation; a jump in the
plasma density of a factor of 100 is introduced in the middle of an otherwise
equally dense electron-proton plasma with an uniform proton and electron
temperature of 10eV and 1keV respectively. The diffusion of the dense plasma,
through the rarified one, triggers the onset of different nonlinear phenomena
such as a strong ion-acoustic shock wave and a rarefaction wave. Secondary
structures are detected, some of which are driven by a drift instability of the
rarefaction wave. Efficient proton acceleration occurs ahead of the shock,
bringing the maximum proton velocity up to 60 times the initial ion thermal
speed
Multidimensional simulations of magnetic field amplification and electron acceleration to near-energy equipartition with ions by a mildly relativistic quasi-parallel plasma collision
The energetic electromagnetic eruptions observed during the prompt phase of
gamma-ray bursts are attributed to synchrotron emissions. The internal shocks
moving through the ultrarelativistic jet, which is ejected by an imploding
supermassive star, are the likely source of this radiation. Synchrotron
emissions at the observed strength require the simultaneous presence of
powerful magnetic fields and highly relativistic electrons. We explore with one
and three-dimensional relativistic particle-in-cell simulations the transition
layer of a shock, that evolves out of the collision of two plasma clouds at a
speed 0.9c and in the presence of a quasi-parallel magnetic field. The cloud
densities vary by a factor of 10. The number densities of ions and electrons in
each cloud, which have the mass ratio 250, are equal. The peak Lorentz factor
of the electrons is determined in the 1D simulation, as well as the orientation
and the strength of the magnetic field at the boundary of the two colliding
clouds. The relativistic masses of the electrons and ions close to the shock
transition layer are comparable as in previous work. The 3D simulation shows
rapid and strong plasma filamentation behind the transient precursor. The
magnetic field component orthogonal to the initial field direction is amplified
in both simulations to values that exceed those expected from the shock
compression by over an order of magnitude. The forming shock is
quasi-perpendicular due to this amplification. The simultaneous presence of
highly relativistic electrons and strong magnetic fields will give rise to
significant synchrotron emissions.Comment: 8 pages, 5 figures. This work was presented at 21st International
Conference on Numerical Simulation of Plasmas (ICNSP'09). Accepted for
publication IEEE Trans. on Plasma Scienc
Particle-in-cell simulation of a mildly relativistic collision of an electron-ion plasma carrying a quasi-parallel magnetic field: Electron acceleration and magnetic field amplification at supernova shocks
Plasma processes close to SNR shocks result in the amplification of magnetic
fields and in the acceleration of electrons, injecting them into the diffusive
acceleration mechanism. The acceleration of electrons and the B field
amplification by the collision of two plasma clouds, each consisting of
electrons and ions, at a speed of 0.5c is investigated. A quasi-parallel
guiding magnetic field, a cloud density ratio of 10 and a plasma temperature of
25 keV are considered. A quasi-planar shock forms at the front of the dense
plasma cloud. It is mediated by a circularly left-hand polarized
electromagnetic wave with an electric field component along the guiding
magnetic field. Its propagation direction is close to that of the guiding field
and orthogonal to the collision boundary. It has a low frequency and a
wavelength that equals several times the ion inertial length, which would be
indicative of a dispersive Alfven wave close to the ion cyclotron resonance
frequency of the left-handed mode (ion whistler), provided that the frequency
is appropriate. However, it moves with the super-alfvenic plasma collision
speed, suggesting that it is an Alfven precursor or a nonlinear MHD wave such
as a Short Large-Amplitude Magnetic Structure (SLAMS). The growth of the
magnetic amplitude of this wave to values well in excess of those of the
quasi-parallel guiding field and of the filamentation modes results in a
quasi-perpendicular shock. We present evidence for the instability of this mode
to a four wave interaction. The waves developing upstream of the dense cloud
give rise to electron acceleration ahead of the collision boundary. Energy
equipartition between the ions and the electrons is established at the shock
and the electrons are accelerated to relativistic speeds.Comment: 16 pages, 18 figures, Accepted for publication by Astron & Astrophy
- …