62 research outputs found
Community occupancy responses of small mammals to restoration treatments in ponderosa pine forests, northern Arizona, USA
In western North American conifer forests, wildfires are increasing in frequency and severity due to heavy fuel loads that have accumulated after a century of fire suppression. Forest restoration treatments (e.g., thinning and/or burning) are being designed and implemented at large spatial and temporal scales in an effort to reduce fire risk and restore forest structure and function. In ponderosa pine (Pinus ponderosa) forests, predominantly open forest structure and a frequent, low-severity fire regime constituted the evolutionary environment for wildlife that persisted for thousands of years. Small mammals are important in forest ecosystems as prey and in affecting primary production and decomposition. During 2006–2009, we trapped eight species of small mammals at 294 sites in northern Arizona and used occupancy modeling to determine community responses to thinning and habitat features. The most important covariates in predicting small mammal occupancy were understory vegetation cover, large snags, and treatment. Our analysis identified two generalist species found at relatively high occupancy rates across all sites, four open-forest species that responded positively to treatment, and two dense-forest species that responded negatively to treatment unless specific habitat features were retained. Our results indicate that all eight small mammal species can benefit from restoration treatments, particularly if aspects of their evolutionary environment (e.g., large trees, snags, woody debris) are restored. The occupancy modeling approach we used resulted in precise species-level estimates of occupancy in response to habitat attributes for a greater number of small mammal species than in other comparable studies. We recommend our approach for other studies faced with high variability and broad spatial and temporal scales in assessing impacts of treatments or habitat alteration on wildlife species. Moreover, since forest planning efforts are increasingly focusing on progressively larger treatment implementation, better and more efficiently obtained ecological information is needed to inform these efforts
Projecting current and future location, quality, and connectivity of habitat for breeding birds in the Great Basin
We estimated the current location, quality, and connectivity of habitat for 50 species of breeding birds in four mountain ranges in the central Great Basin (Lander, Nye, and Eureka Counties, Nevada) and projected the future location, quality, and connectivity of habitat for these species given different scenarios of climate-induced land-cover change. In the United States, such models are relevant to federally mandated management of wild animals by state-level agencies. We sampled birds during the breeding seasons of 2001–2009 with fixed-radius point counts. For each species, we used boosted regression trees to model incidence (proportion of years a location was surveyed in which the species was present) as a function of topography and current land cover and climate. To assess model fit, we calculated the proportion of binomial deviance explained. We used cross-validation to estimate the predictive accuracy of the models. We applied the conservation planning program Zonation to identify locations where incidences of multiple species were maximized through time given current land cover and two scenarios of land-cover change, expansion of pinyon–juniper woodland into sagebrush shrubsteppe and contraction of riparian woodland. Models based on a set of 13 covariates derived from remotely sensed data had some predictive capacity for 41 of 50 species. Model outputs suggested substantial changes in amount of habitat for many species following projected expansion of pinyon–juniper woodland, but less pronounced changes following projected contraction of riparian woodland. Zonation analyses indicated that the spatial distribution of the highest-quality habitat for the avian assemblage was relatively consistent through time under both scenarios. Breeding birds in the Great Basin commonly are grouped in management plans on the basis of their general association with land-cover classes such as pinyon–juniper woodland, sagebrush shrubsteppe, and riparian woodland. However, even within these groups, the environmental attributes that explained a high proportion of variation in species' incidences and the projected responses to different scenarios of land-cover change varied considerably among species
Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab
We present measurements of the differential cross section and Lambda recoil
polarization for the gamma p to K+ Lambda reaction made using the CLAS detector
at Jefferson Lab. These measurements cover the center-of-mass energy range from
1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles.
Independent analyses were performed using the K+ p pi- and K+ p (missing pi -)
final-state topologies; results from these analyses were found to exhibit good
agreement. These differential cross section measurements show excellent
agreement with previous CLAS and LEPS results and offer increased precision and
a 300 MeV increase in energy coverage. The recoil polarization data agree well
with previous results and offer a large increase in precision and a 500 MeV
extension in energy range. The increased center-of-mass energy range that these
data represent will allow for independent study of non-resonant K+ Lambda
photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure
Coherent Photoproduction of pi^+ from 3^He
We have measured the differential cross section for the
He reaction. This reaction was studied using
the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons
produced with the Hall-B bremsstrahlung tagging system in the energy range from
0.50 to 1.55 GeV were incident on a cryogenic liquid He target. The
differential cross sections for the He
reaction were measured as a function of photon-beam energy and pion-scattering
angle. Theoretical predictions to date cannot explain the large cross sections
except at backward angles, showing that additional components must be added to
the model.Comment: 11 pages, 16 figure
A Bayesian analysis of pentaquark signals from CLAS data
We examine the results of two measurements by the CLAS collaboration, one of
which claimed evidence for a pentaquark, whilst the other found no
such evidence. The unique feature of these two experiments was that they were
performed with the same experimental setup. Using a Bayesian analysis we find
that the results of the two experiments are in fact compatible with each other,
but that the first measurement did not contain sufficient information to
determine unambiguously the existence of a . Further, we suggest a
means by which the existence of a new candidate particle can be tested in a
rigorous manner.Comment: 5 pages, 3 figure
Search for the Decay
We have searched for the decay of the tau lepton into seven charged particles
and zero or one pi0. The data used in the search were collected with the CLEO
II detector at the Cornell Electron Storage Ring (CESR) and correspond to an
integrated luminosity of 4.61 fb^(-1). No evidence for a signal is found.
Assuming all the charged particles are pions, we set an upper limit on the
branching fraction, B(tau- -> 4pi- 3pi+ (pi0) nu_tau) < 2.4 x 10^(-6) at the
90% confidence level. This limit represents a significant improvement over the
previous limit.Comment: 9 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
Partial wave analysis of the reaction gamma p -> p omega$ and the search for nucleon resonances
An event-based partial wave analysis (PWA) of the reaction gamma p -> p omega
has been performed on a high-statistics dataset obtained using the CLAS at
Jefferson Lab for center-of-mass energies from threshold up to 2.4 GeV. This
analysis benefits from access to the world's first high precision spin density
matrix element measurements, available to the event-based PWA through the decay
distribution of omega-> pi+ pi - pi0. The data confirm the dominance of the
t-channel pi0 exchange amplitude in the forward direction. The dominant
resonance contributions are consistent with the previously identified states
F[15](1680) and D[13](1700) near threshold, as well as the G[17](2190) at
higher energies. Suggestive evidence for the presence of a J(P)=5/2(+) state
around 2 GeV, a "missing" state, has also been found. Evidence for other states
is inconclusive
Evidence for the Onset of Color Transparency in Electroproduction off Nuclei
We have measured the nuclear transparency of the incoherent diffractive
process in C and Fe targets relative to H
using a 5 GeV electron beam. The nuclear transparency, the ratio of the
produced 's on a nucleus relative to deuterium, which is sensitive to
interaction, was studied as function of the coherence length (),
a lifetime of the hadronic fluctuation of the virtual photon, and the
four-momentum transfer squared (). While the transparency for both
C and Fe showed no dependence, a significant
dependence was measured, which is consistent with calculations that included
the color transparency effects.Comment: 6 pages and 4 figure
- …