211 research outputs found

    Resistance to fosfomycin is increasing and is significantly associated with extended-spectrum β-lactamase-production in urinary isolates of Escherichia coli

    Get PDF
    Fosfomycin has become a therapeutic option in urinary tract infections. Our objective was to evaluate the in vitro activity of fosfomycin against Escherichia coli isolated from urine samples in 2013, 2018 and 2021. We also determined a putative association between fosfomycin resistance and extended-spectrum β-lactamases (ESBL) production. Fosfomycin activity was evaluated against 7367, 8128 and 5072 Escherichia coli urinary isolates in 2013, 2018 and 2021, respectively. We compare the prevalence of fosfomycin-resistant strains among the ESBL- and non-ESBL-producing isolates. MICs of fosfomycin, cefotaxime, and cefotaxime-clavulanate were determined by a microdilution method. 302 ESBL-producers were selected to determine MICs of fosfomycin by agar dilution and genes encoding ESBLs were detected by PCR. Among the total of ESBL-producing strains, 14.3%, 20.8% and 20% were resistant to fosfomycin in 2013, 2018 and 2021, respectively, whereas fosfomycin resistance in non-ESBL producers was 3.5%, 4.05% and 5.53% for each year (P ≤ 0.001). In the 302 selected ESBL-producing isolates, CTX-M was the main ESBL (228 isolates), being 50.7% CTX-M-15. Resistance to fosfomycin among these ESBL-producing strains was associated (P = 0.049) with isolates that produced the CTX-M type. Our data show that fosfomycin resistance is increasing in Escherichia coli urinary isolates and it is related to ESBL-production. A follow-up of fosfomycin resistance is required

    Referentes históricos sobre algunas doctrinas del Sistema de Derecho Internacional Privado

    Get PDF
    El derecho internacional privado resuelve la disparidad legislativa y ayuda a regular indirectamente las relaciones entre actores en conflicto. El marco jurídico del derecho internacional privado, permite crear confianza en las transacciones de tipo civil y comercial, así como en los procesos de negociación. El propósito de sin agotar el tema hacer un breve recorrido por las doctrinas de los principales exponentes en los diferentes sistemas del derecho internacional privado. La metodología   utilizada fue el método de análisis y síntesis en diferentes documentos legales que existen, así como mediante el método histórico lógico que constituyó una importante herramienta en la búsqueda del surgimiento en varios países, así como destacando varias personalidades que realizaron sus aportes en el desarrollo del derecho internacional privado. Los resultados evidencian la propuesta de un esquema organizativo adoptado en el estudio que permitió bridar una secuencia de acontecimientos en su surgimiento el derecho internacional privado. Se concluye haciendo una elaboración histórica sobre el pensamiento y la práctica legislativa del derecho internacional privado

    Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms

    Full text link
    This is the peer reviewed version of the following article: Barro¿Trastoy, D., Carrera, E., Baños, J., Palau-Rodríguez, J., Ruiz-Rivero, O., Tornero, P., Alonso, J.M., López-Díaz, I., Gómez, M.D. and Pérez-Amador, M.A. (2020), Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. Plant J, 102: 1026-1041, which has been published in final form at https://doi.org/10.1111/tpj.14684. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co-regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.We wish to thank B. Janssen (Horticulture and Food Research Institute, New Zealand) for the pBJ60 shuttle vector, C. Ferrandiz and M. Colombo (IBMCP, CSIC-UPV, Valencia, Spain) for their help in the generation of 35S:ANT lines and L.E.P. Peres (Universidade de Sao Paulo, Brazil) for the tomato mutant lines. Our thanks also go to C. Fuster for technical assistance. This work was supported by grants from the Spanish Ministry of Economy and Competitiveness-FEDER (BIO2017-83138R) to MAPA and from NSF (DBI-0820755, MCB-1158181, and IOS-1444561) to JMA.Barro-Trastoy, D.; Carrera, E.; Baños, J.; Palau-Rodríguez, J.; Ruiz-Rivero, O.; Tornero Feliciano, P.; Alonso, JM.... (2020). Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. The Plant Journal. 102(5):1026-1041. https://doi.org/10.1111/tpj.14684S102610411025Azhakanandam, S., Nole-Wilson, S., Bao, F., & Franks, R. G. (2008). SEUSSandAINTEGUMENTAMediate Patterning and Ovule Initiation during Gynoecium Medial Domain Development    . Plant Physiology, 146(3), 1165-1181. doi:10.1104/pp.107.114751Bai, M.-Y., Shang, J.-X., Oh, E., Fan, M., Bai, Y., Zentella, R., … Wang, Z.-Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14(8), 810-817. doi:10.1038/ncb2546Baker, S. C., Robinson-Beers, K., Villanueva, J. M., Gaiser, J. C., & Gasser, C. S. (1997). Interactions Among Genes Regulating Ovule Development in Arabidopsis thaliana. Genetics, 145(4), 1109-1124. doi:10.1093/genetics/145.4.1109Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana      . The Plant Cell, 23(1), 69-80. doi:10.1105/tpc.110.079079Belkhadir, Y., & Jaillais, Y. (2015). The molecular circuitry of brassinosteroid signaling. New Phytologist, 206(2), 522-540. doi:10.1111/nph.13269Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164Brumos, J., Zhao, C., Gong, Y., Soriano, D., Patel, A. P., Perez-Amador, M. A., … Alonso, J. M. (2019). An Improved Recombineering Toolset for Plants. The Plant Cell, 32(1), 100-122. doi:10.1105/tpc.19.00431Carrera, E., Ruiz-Rivero, O., Peres, L. E. P., Atares, A., & Garcia-Martinez, J. L. (2012). Characterization of the procera Tomato Mutant Shows Novel Functions of the SlDELLA Protein in the Control of Flower Morphology, Cell Division and Expansion, and the Auxin-Signaling Pathway during Fruit-Set and Development    . Plant Physiology, 160(3), 1581-1596. doi:10.1104/pp.112.204552Carvalho, R. F., Campos, M. L., Pino, L. E., Crestana, S. L., Zsögön, A., Lima, J. E., … Peres, L. E. (2011). Convergence of developmental mutants into a single tomato model system: «Micro-Tom» as an effective toolkit for plant development research. Plant Methods, 7(1). doi:10.1186/1746-4811-7-18Chory, J., Nagpal, P., & Peto, C. A. (1991). Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. The Plant Cell, 3(5), 445. doi:10.2307/3869351Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xClouse, S. D. (2011). Brassinosteroid Signal Transduction: From Receptor Kinase Activation to Transcriptional Networks Regulating Plant Development. The Plant Cell, 23(4), 1219-1230. doi:10.1105/tpc.111.084475Cucinotta, M., Colombo, L., & Roig-Villanova, I. (2014). Ovule development, a new model for lateral organ formation. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00117Cucinotta, M., Manrique, S., Guazzotti, A., Quadrelli, N. E., Mendes, M. A., Benkova, E., & Colombo, L. (2016). Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development. doi:10.1242/dev.143545Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011De Vleesschauwer, D., Van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I.-R., … Höfte, M. (2012). Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice      . Plant Physiology, 158(4), 1833-1846. doi:10.1104/pp.112.193672Dorcey, E., Urbez, C., Blázquez, M. A., Carbonell, J., & Perez-Amador, M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal, 58(2), 318-332. doi:10.1111/j.1365-313x.2008.03781.xFujioka, S., Li, J., Choi, Y. H., Seto, H., Takatsuto, S., Noguchi, T., … Sakurai, A. (1997). The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. The Plant Cell, 9(11), 1951-1962. doi:10.1105/tpc.9.11.1951Galbiati, F., Sinha Roy, D., Simonini, S., Cucinotta, M., Ceccato, L., Cuesta, C., … Colombo, L. (2013). An integrative model of the control of ovule primordia formation. The Plant Journal, 76(3), 446-455. doi:10.1111/tpj.12309Gallego-Bartolome, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., … Blazquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109(33), 13446-13451. doi:10.1073/pnas.1119992109García-Hurtado, N., Carrera, E., Ruiz-Rivero, O., López-Gresa, M. P., Hedden, P., Gong, F., & García-Martínez, J. L. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany, 63(16), 5803-5813. doi:10.1093/jxb/ers229Gleave, A. P. (1992). A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology, 20(6), 1203-1207. doi:10.1007/bf00028910Gomez, M. D., Ventimilla, D., Sacristan, R., & Perez-Amador, M. A. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology, 172(4), 2403-2415. doi:10.1104/pp.16.01231He, J.-X., Gendron, J. M., Sun, Y., Gampala, S. S. L., Gendron, N., Sun, C. Q., & Wang, Z.-Y. (2005). BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses. Science, 307(5715), 1634-1638. doi:10.1126/science.1107580Huang, H.-Y., Jiang, W.-B., Hu, Y.-W., Wu, P., Zhu, J.-Y., Liang, W.-Q., … Lin, W.-H. (2013). BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Molecular Plant, 6(2), 456-469. doi:10.1093/mp/sss070Kurepin, L. V., Joo, S.-H., Kim, S.-K., Pharis, R. P., & Back, T. G. (2011). Interaction of Brassinosteroids with Light Quality and Plant Hormones in Regulating Shoot Growth of Young Sunflower and Arabidopsis Seedlings. Journal of Plant Growth Regulation, 31(2), 156-164. doi:10.1007/s00344-011-9227-7Li, Q.-F., Wang, C., Jiang, L., Li, S., Sun, S. S. M., & He, J.-X. (2012). An Interaction Between BZR1 and DELLAs Mediates Direct Signaling Crosstalk Between Brassinosteroids and Gibberellins in Arabidopsis. Science Signaling, 5(244). doi:10.1126/scisignal.2002908Li, X.-J., Chen, X.-J., Guo, X., Yin, L.-L., Ahammed, G. J., Xu, C.-J., … Yu, J.-Q. (2015). DWARFoverexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato. Plant Biotechnology Journal, 14(3), 1021-1033. doi:10.1111/pbi.12474Liu, Z., Franks, R. G., & Klink, V. P. (2000). Regulation of Gynoecium Marginal Tissue Formation by LEUNIG and AINTEGUMENTA. The Plant Cell, 12(10), 1879-1891. doi:10.1105/tpc.12.10.1879Marti, E. (2006). Genetic and physiological characterization of tomato cv. Micro-Tom. Journal of Experimental Botany, 57(9), 2037-2047. doi:10.1093/jxb/erj154Mizukami, Y., & Fischer, R. L. (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences, 97(2), 942-947. doi:10.1073/pnas.97.2.942Montoya, T., Nomura, T., Yokota, T., Farrar, K., Harrison, K., Jones, J. G. D., … Bishop, G. J. (2005). Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. The Plant Journal, 42(2), 262-269. doi:10.1111/j.1365-313x.2005.02376.xMüller, C. J., Larsson, E., Spíchal, L., & Sundberg, E. (2017). Cytokinin-Auxin Crosstalk in the Gynoecial Primordium Ensures Correct Domain Patterning. Plant Physiology, 175(3), 1144-1157. doi:10.1104/pp.17.00805Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.xOlimpieri, I., Siligato, F., Caccia, R., Soressi, G. P., Mazzucato, A., Mariotti, L., & Ceccarelli, N. (2007). Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta, 226(4), 877-888. doi:10.1007/s00425-007-0533-zPaz-Ares, J., & The REGIA Consortium. (2002). REGIA, An EU Project on Functional Genomics of Transcription Factors fromArabidopsis thaliana. Comparative and Functional Genomics, 3(2), 102-108. doi:10.1002/cfg.146Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P., & Harberd, N. P. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses . Genes & Development, 11(23), 3194-3205. doi:10.1101/gad.11.23.3194Reyes-Olalde, J. I., Zuñiga-Mayo, V. M., Chávez Montes, R. A., Marsch-Martínez, N., & de Folter, S. (2013). Inside the gynoecium: at the carpel margin. Trends in Plant Science, 18(11), 644-655. doi:10.1016/j.tplants.2013.08.002Sabelli, P. A., & Larkins, B. A. (2009). The Development of Endosperm in Grasses. Plant Physiology, 149(1), 14-26. doi:10.1104/pp.108.129437Schneitz, K., Baker, S. C., Gasser, C. S., & Redweik, A. (1998). Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana. Development, 125(14), 2555-2563. doi:10.1242/dev.125.14.2555Schneitz, K., Hulskamp, M., & Pruitt, R. E. (1995). Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. The Plant Journal, 7(5), 731-749. doi:10.1046/j.1365-313x.1995.07050731.xSeo, M., Jikumaru, Y., & Kamiya, Y. (2011). Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Methods in Molecular Biology, 99-111. doi:10.1007/978-1-61779-231-1_7Serrani, J. C., Sanjuán, R., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2007). Gibberellin Regulation of Fruit Set and Growth in Tomato. Plant Physiology, 145(1), 246-257. doi:10.1104/pp.107.098335Serrani, J. C., Carrera, E., Ruiz-Rivero, O., Gallego-Giraldo, L., Peres, Lá. E. P., & García-Martínez, J. L. (2010). Inhibition of Auxin Transport from the Ovary or from the Apical Shoot Induces Parthenocarpic Fruit-Set in Tomato Mediated by Gibberellins    . Plant Physiology, 153(2), 851-862. doi:10.1104/pp.110.155424Sun, T. (2010). Gibberellin-GID1-DELLA: A Pivotal Regulatory Module for Plant Growth and Development. Plant Physiology, 154(2), 567-570. doi:10.1104/pp.110.161554Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036Tanaka, K., Nakamura, Y., Asami, T., Yoshida, S., Matsuo, T., & Okamoto, S. (2003). Physiological Roles of Brassinosteroids in Early Growth of Arabidopsis: Brassinosteroids Have a Synergistic Relationship with Gibberellin as well as Auxin in Light-Grown Hypocotyl Elongation. Journal of Plant Growth Regulation, 22(3), 259-271. doi:10.1007/s00344-003-0119-3Tang, Y., Liu, H., Guo, S., Wang, B., Li, Z., Chong, K., & Xu, Y. (2017). OsmiR396d Affects Gibberellin and Brassinosteroid Signaling to Regulate Plant Architecture in Rice. Plant Physiology, 176(1), 946-959. doi:10.1104/pp.17.00964Tong, H., Xiao, Y., Liu, D., Gao, S., Liu, L., Yin, Y., … Chu, C. (2014). Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice    . The Plant Cell, 26(11), 4376-4393. doi:10.1105/tpc.114.132092Truernit, E., Bauby, H., Dubreucq, B., Grandjean, O., Runions, J., Barthélémy, J., & Palauqui, J.-C. (2008). High-Resolution Whole-Mount Imaging of Three-Dimensional Tissue Organization and Gene Expression Enables the Study of Phloem Development and Structure inArabidopsis . The Plant Cell, 20(6), 1494-1503. doi:10.1105/tpc.107.056069Tursun, B., Cochella, L., Carrera, I., & Hobert, O. (2009). A Toolkit and Robust Pipeline for the Generation of Fosmid-Based Reporter Genes in C. elegans. PLoS ONE, 4(3), e4625. doi:10.1371/journal.pone.0004625Unterholzner, S. J., Rozhon, W., Papacek, M., Ciomas, J., Lange, T., Kugler, K. G., … Poppenberger, B. (2015). Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis. The Plant Cell, 27(8), 2261-2272. doi:10.1105/tpc.15.00433Wang, Z.-Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., … Chory, J. (2002). Nuclear-Localized BZR1 Mediates Brassinosteroid-Induced Growth and Feedback Suppression of Brassinosteroid Biosynthesis. Developmental Cell, 2(4), 505-513. doi:10.1016/s1534-5807(02)00153-3Xiao, H., Radovich, C., Welty, N., Hsu, J., Li, D., Meulia, T., & van der Knaap, E. (2009). Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biology, 9(1). doi:10.1186/1471-2229-9-49Xiao, Y., Liu, D., Zhang, G., Tong, H., & Chu, C. (2017). Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.0169

    Clinical characteristics associated with the severity of Clostridium [Clostridioides] difficile infection in a tertiary teaching hospital from Mexico

    Get PDF
    Background: Clostridium difficile infection (CDI) is a leading cause of healthcare-associated diarrhea worldwide. In this study, risk factors associated with the development of severe-complicated and recurrent outcomes in CDI patients in different age groups, including the non-elderly, were assessed in a third-level hospital. Methods: CDI cases were detected by clinical data and polymerase-chain-reaction (PCR). Clinical, demographic, epidemiological, and microbiological risk factors for CDI were evaluated. Results: During the study period, 248 out of 805 patients with nosocomial diarrhea were diagnosed with CDI and the majority were severe-complicated cases (87.90%). Female gender (OR 3.19, 95% CI 1.19e8.55, p ¼ 0.02) and lymphoma (OR 3.95, 95% CI 1.03e15.13, p ¼ 0.04) were risk factors for severe-complicated CDI. Mature adulthood (51e60 years) (OR 5.80, 95% CI 1.56e21.62, p ¼ 0.01), previous rifampicin use (OR 7.44, 95% CI 2.10e26.44, p ¼ 0.00), and neoplasm (solid malignant neoplasm or hematological malignancies) (OR 4.12, 95% CI 1.01e16.83, p ¼ 0.04) were risk factors for recurrent infection. Autoimmune disorders (OR 6.62, CI 95% 1.26e34.73, p ¼ 0.02), leukemia (OR 4.97, 95% CI 1.05e23.58, p ¼ 0.04), lymphoma (OR 3.79, 95% CI 1.03e12.07, p ¼ 0.04) and previous colistin treatment (OR 4.97, 95% CI 1.05e23.58, p ¼ 0.04) were risk factors for 30-day mortality. Conclusion: Newly identified risk factors for recurrent CDI were rifampicin treatment and age between 51 and 60 years; colistin treatment was identified as a risk factor for 30-day mortality. Previously identified risk factors for severe-complicated CDI were confirmed, but with a major impact on non-elderly patients

    Screening of cervical cancer in Catalonia 2006-2012

    Full text link
    The early detection of intraepithelial lesions of the cervix, through the periodic examination of cervical cells, has been fundamental for the prevention of invasive cervical cancer and its related mortality. In this report, we summarise the cervical cancer screening activities carried out in Catalonia, Spain, within the National Health System during 2008-2011. The study population covers over two million women resident in the area. The evaluation includes 758,690 cervical cytologies performed on a total of 595,868 women. The three-year coverage of cervical cytology among women aged between 25 and 65 years was 40.8%. About 50% of first screened women with negative results had not returned to the second screening round. The introduction of high-risk human papillomavirus DNA (HPV) detection, as a primary screening cotest with cytology among women over age 40 with a poor screening history, significantly improved the detection of cervical intraepithelial neoplasia grade 2 or worse (CIN2+), being far superior to cytology alone. Cotesting did not improve the detection of CIN2+. The use of the HPV test for the triage of atypical squamous cell undetermined significance (ASC-US) improved the selection of women at high risk of CIN2

    Effectiveness of Thrombectomy in Stroke According to Baseline Prognostic Factors: Inverse Probability of Treatment Weighting Analysis of a Population-Based Registry

    Get PDF
    Background and Purpose In real-world practice, the benefit of mechanical thrombectomy (MT) is uncertain in stroke patients with very favorable or poor prognostic profiles at baseline. We studied the effectiveness of MT versus medical treatment stratifying by different baseline prognostic factors. Methods Retrospective analysis of 2,588 patients with an ischemic stroke due to large vessel occlusion nested in the population-based registry of stroke code activations in Catalonia from January 2017 to June 2019. The effect of MT on good functional outcome (modified Rankin Score 85 years, National Institutes of Health Stroke Scale [NIHSS] >25, time from onset >6 hours, Alberta Stroke Program Early CT Score 3), good (if NIHSS <6 or distal occlusion, in the absence of poor prognostic factors), or reference (not meeting other groups' criteria). Results Patients receiving MT (n=1,996, 77%) were younger, had less pre-stroke disability, and received systemic thrombolysis less frequently. These differences were balanced after the IPTW stratified by prognosis. MT was associated with good functional outcome in the reference (odds ratio [OR], 2.9; 95% confidence interval [CI], 2.0 to 4.4), and especially in the poor baseline prognostic stratum (OR, 3.9; 95% CI, 2.6 to 5.9), but not in the good prognostic stratum. MT was associated with survival only in the poor prognostic stratum (OR, 2.6; 95% CI, 2.0 to 3.3). Conclusions Despite their worse overall outcomes, the impact of thrombectomy over medical management was more substantial in patients with poorer baseline prognostic factors than patients with good prognostic factors

    CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs

    Get PDF
    Mitochondria are essential organelles that host crucial metabolic pathways and produce adenosine triphosphate. The mitochondrial proteome is heterogeneous among tissues and can dynamically change in response to different metabolic conditions. Although the transcriptional programs that govern mitochondrial biogenesis and respiratory function are well known, posttranscriptional regulatory mechanisms remain unclear. In this study, we show that the cytosolic RNA-binding protein clustered mitochondria homologue (CLUH) regulates the expression of a mitochondrial protein network supporting key metabolic programs required under nutrient deprivation. CLUH exerts its function by controlling the stability and translation of target messenger RNAs. In the absence of Cluh, mitochondria are severely depleted of crucial enzymes involved in catabolic energy-converting pathways. CLUH preserves oxidative mitochondrial function and glucose homeostasis, thus preventing death at the fetal–neonatal transition. In the adult liver, CLUH ensures maximal respiration capacity and the metabolic response to starvation. Our results shed new light on the posttranscriptional mechanisms controlling the expression of mitochondrial proteins and suggest novel strategies to tailor mitochondrial function to physiological and pathological conditions.Peer reviewe

    Spanish cohort of VEXAS syndrome : clinical manifestations, outcome of treatments and novel evidences about UBA1 mosaicism

    Get PDF
    The vacuoles, E1-enzyme, X linked, autoinflammatory and somatic (VEXAS) syndrome is an adult-onset autoinflammatory disease (AID) due to postzygotic UBA1 variants. To investigate the presence of VEXAS syndrome among patients with adult-onset undiagnosed AID. Additional studies evaluated the mosaicism distribution and the circulating cytokines. Gene analyses were performed by both Sanger and amplicon-based deep sequencing. Patients' data were collected from their medical charts. Cytokines were quantified by Luminex. Genetic analyses of enrolled patients (n=42) identified 30 patients carrying UBA1 pathogenic variants, with frequencies compatible for postzygotic variants. All patients were male individuals who presented with a late-onset disease (mean 67.5 years; median 67.0 years) characterised by cutaneous lesions (90%), fever (66.7%), pulmonary manifestations (66.7%) and arthritis (53.3%). Macrocytic anaemia and increased erythrocyte sedimentation rate and ferritin were the most relevant analytical abnormalities. Glucocorticoids ameliorated the inflammatory manifestations, but most patients became glucocorticoid-dependent. Positive responses were obtained when targeting the haematopoietic component of the disease with either decitabine or allogeneic haematopoietic stem cell transplantation. Additional analyses detected the UBA1 variants in both haematopoietic and non-haematopoietic tissues. Finally, analysis of circulating cytokines did not identify inflammatory mediators of the disease. Thirty patients with adult-onset AID were definitively diagnosed with VEXAS syndrome through genetic analyses. Despite minor interindividual differences, their main characteristics were in concordance with previous reports. We detected for the first time the UBA1 mosaicism in non-haematopoietic tissue, which questions the previous concept of myeloid-restricted mosaicism and may have conceptual consequences for the disease mechanisms
    corecore