35,762 research outputs found
Enhancing SDO/HMI images using deep learning
The Helioseismic and Magnetic Imager (HMI) provides continuum images and
magnetograms with a cadence better than one per minute. It has been
continuously observing the Sun 24 hours a day for the past 7 years. The obvious
trade-off between full disk observations and spatial resolution makes HMI not
enough to analyze the smallest-scale events in the solar atmosphere. Our aim is
to develop a new method to enhance HMI data, simultaneously deconvolving and
super-resolving images and magnetograms. The resulting images will mimic
observations with a diffraction-limited telescope twice the diameter of HMI.
Our method, which we call Enhance, is based on two deep fully convolutional
neural networks that input patches of HMI observations and output deconvolved
and super-resolved data. The neural networks are trained on synthetic data
obtained from simulations of the emergence of solar active regions. We have
obtained deconvolved and supper-resolved HMI images. To solve this ill-defined
problem with infinite solutions we have used a neural network approach to add
prior information from the simulations. We test Enhance against Hinode data
that has been degraded to a 28 cm diameter telescope showing very good
consistency. The code is open source.Comment: 13 pages, 10 figures. Accepted for publication in Astronomy &
Astrophysic
How does breakup influence the total fusion of Li at the Coulomb barrier?
Total (complete + incomplete) fusion excitation functions of Li on
Co and Bi targets around the Coulomb barrier are obtained using
a new continuum discretized coupled channel (CDCC) method of calculating
fusion. The relative importance of breakup and bound-state structure effects on
total fusion is particularly investigated. The effect of breakup on fusion can
be observed in the total fusion excitation function. The breakup enhances the
total fusion at energies just around the barrier, whereas it hardly affects the
total fusion at energies well above the barrier. The difference between the
experimental total fusion cross sections for Li on Co is notably
caused by breakup, but this is not the case for the Bi target.Comment: 9 pages, 9 figures, Submitted to Phys. Rev.
On the use of the Fourier Transform to determine the projected rotational velocity of line-profile variable B stars
The Fourier Transform method is a popular tool to derive the rotational
velocities of stars from their spectral line profiles. However, its domain of
validity does not include line-profile variables with time-dependent profiles.
We investigate the performance of the method for such cases, by interpreting
the line-profile variations of spotted B stars, and of pulsating B tars, as if
their spectral lines were caused by uniform surface rotation along with
macroturbulence. We perform time-series analysis and harmonic least-squares
fitting of various line diagnostics and of the outcome of several
implementations of the Fourier Transform method. We find that the projected
rotational velocities derived from the Fourier Transform vary appreciably
during the pulsation cycle whenever the pulsational and rotational velocity
fields are of similar magnitude. The macroturbulent velocities derived while
ignoring the pulsations can vary with tens of km/s during the pulsation cycle.
The temporal behaviour of the deduced rotational and macroturbulent velocities
are in antiphase with each other. The rotational velocity is in phase with the
second moment of the line profiles. The application of the Fourier method to
stars with considerable pulsational line broadening may lead to an appreciable
spread in the values of the rotation velocity, and, by implication, of the
deduced value of the macroturbulence. These two quantities should therefore not
be derived from single snapshot spectra if the aim is to use them as a solid
diagnostic for the evaluation of stellar evolution models of slow to moderate
rotators.Comment: 13 pages, 9 figures, accepted for publication in Astronomy &
Astrophysic
Self-organized evolution in socio-economic environments
We propose a general scenario to analyze social and economic changes in
modern environments. We illustrate the ideas with a model that incorporating
the main trends is simple enough to extract analytical results and, at the same
time, sufficiently complex to display a rich dynamic behavior. Our study shows
that there exists a macroscopic observable that is maximized in a regime where
the system is critical, in the sense that the distribution of events follow
power-laws. Computer simulations show that, in addition, the system always
self-organizes to achieve the optimal performance in the stationary state.Comment: 4 pages RevTeX; needs epsf.sty and rotate.sty; submitted to Phys Rev
Let
- …