36 research outputs found

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Effect of cytomegalovirus infection on breastfeeding transmission of HIV and on the health of infants born to HIV-infected mothers

    Get PDF
    Cytomegalovirus (CMV) infection can be acquired in utero or postnatally through horizontal transmission and breastfeeding. The effect of postnatal CMV infection on postnatal HIV transmission is unknown

    Plasma Micronutrient Concentrations Are Altered by Antiretroviral Therapy and Lipid-Based Nutrient Supplements in Lactating HIV-Infected Malawian Women

    Get PDF
    Background: Little is known about the influence of antiretroviral therapy with or without micronutrient supplementation on the micronutrient concentrations of HIV-infected lactating women in resource-constrained settings

    Two-Color, Laser Excitation Improves Temporal Resolution for Detecting the Dynamic, Plasmonic Coupling between Metallic Nanoparticles

    No full text
    The ability of two, scattering gold nanoparticles (GNPs) to plasmonically couple in a manner that is dependent on the interparticle separation has been exploited to measure nanometer-level displacements. However, despite broad applicability to monitoring biophysical dynamics, the long time scales (<5 Hz) with which plasmonic coupling are typically measured are not suitable for many dynamic molecular processes, generally occurring over several milliseconds. Here, we introduce a new technique intended to overcome this technical limitation: ratiometric analysis using monochromatic, evanescent darkfield illumination (RAMEDI). As a proof-of-principle, we monitored dynamic, plasmonic coupling arising from the binding of single biotin- and neutravidin-GNPs with a temporal resolution of 38 ms. We also show that the observable bandwidth is extendable to faster time scales by demonstrating that RAMEDI is capable of achieving a signal-to-noise ratio greater than 20 from individual GNPs observed with 200 Hz bandwidth
    corecore