37 research outputs found

    Normal microRNA Maturation and Germ-Line Stem Cell Maintenance Requires Loquacious, a Double-Stranded RNA-Binding Domain Protein

    Get PDF
    microRNAs (miRNAs) are single-stranded, 21- to 23-nucleotide cellular RNAs that control the expression of cognate target genes. Primary miRNA (pri-miRNA) transcripts are transformed to mature miRNA by the successive actions of two RNase III endonucleases. Drosha converts pri-miRNA transcripts to precursor miRNA (pre-miRNA); Dicer, in turn, converts pre-miRNA to mature miRNA. Here, we show that normal processing of Drosophila pre-miRNAs by Dicer-1 requires the double-stranded RNA-binding domain (dsRBD) protein Loquacious (Loqs), a homolog of human TRBP, a protein first identified as binding the HIV trans-activator RNA (TAR). Efficient miRNA-directed silencing of a reporter transgene, complete repression of white by a dsRNA trigger, and silencing of the endogenous Stellate locus by Suppressor of Stellate, all require Loqs. In loqs (f00791) mutant ovaries, germ-line stem cells are not appropriately maintained. Loqs associates with Dcr-1, the Drosophila RNase III enzyme that processes pre-miRNA into mature miRNA. Thus, every known Drosophila RNase-III endonuclease is paired with a dsRBD protein that facilitates its function in small RNA biogenesis

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    PinMol

    No full text

    Tiny Molecular Beacons: LNA/2′-<i>O</i>-methyl RNA Chimeric Probes for Imaging Dynamic mRNA Processes in Living Cells

    No full text
    New approaches for imaging dynamic processes involving RNAs in living cells are continuously being developed and optimized. The use of molecular beacons synthesized from 2′-<i>O</i>-methylribonucleotides (which are resistant to cellular nucleases) is an established approach for visualizing native mRNAs in real time. In order to spatially and temporally resolve dynamic steps involving RNA in cells, molecular beacons need to efficiently hybridize to their RNA targets. To expand the repertoire of target sites accessible to molecular beacons, we decreased the length of their probe sequences and altered their backbone by the inclusion of LNA (locked nucleic acid) nucleotides. We named these new LNA/2′-<i>O</i>-methyl RNA chimera oligonucleotides “tiny molecular beacons”. We analyzed these tiny molecular beacons and found that the incorporation of just a few LNA nucleotides enables these shorter probes to stably anneal to more structured regions of the RNA than is possible with conventional molecular beacons. The ease of synthesis of tiny molecular beacons and the flexibility to couple them to a large variety of fluorophores and quenchers render them optimal for the detection of less abundant and/or highly structured RNAs. To determine their efficiency to detect endogenous mRNAs in live specimens, we designed tiny molecular beacons that were specific for <i>oskar</i> mRNA and microinjected them into living <i>Drosophila melanogaster</i> oocytes. We then imaged the live oocytes <i>via</i> spinning disk confocal microscopy. The results demonstrate that tiny molecular beacons hybridize to target mRNA at faster rates than classically designed molecular beacons and are able to access previously inaccessible target regions

    Tiny Molecular Beacons: LNA/2′-<i>O</i>-methyl RNA Chimeric Probes for Imaging Dynamic mRNA Processes in Living Cells

    No full text
    New approaches for imaging dynamic processes involving RNAs in living cells are continuously being developed and optimized. The use of molecular beacons synthesized from 2′-<i>O</i>-methylribonucleotides (which are resistant to cellular nucleases) is an established approach for visualizing native mRNAs in real time. In order to spatially and temporally resolve dynamic steps involving RNA in cells, molecular beacons need to efficiently hybridize to their RNA targets. To expand the repertoire of target sites accessible to molecular beacons, we decreased the length of their probe sequences and altered their backbone by the inclusion of LNA (locked nucleic acid) nucleotides. We named these new LNA/2′-<i>O</i>-methyl RNA chimera oligonucleotides “tiny molecular beacons”. We analyzed these tiny molecular beacons and found that the incorporation of just a few LNA nucleotides enables these shorter probes to stably anneal to more structured regions of the RNA than is possible with conventional molecular beacons. The ease of synthesis of tiny molecular beacons and the flexibility to couple them to a large variety of fluorophores and quenchers render them optimal for the detection of less abundant and/or highly structured RNAs. To determine their efficiency to detect endogenous mRNAs in live specimens, we designed tiny molecular beacons that were specific for <i>oskar</i> mRNA and microinjected them into living <i>Drosophila melanogaster</i> oocytes. We then imaged the live oocytes <i>via</i> spinning disk confocal microscopy. The results demonstrate that tiny molecular beacons hybridize to target mRNA at faster rates than classically designed molecular beacons and are able to access previously inaccessible target regions

    Tiny Molecular Beacons: LNA/2′-<i>O</i>-methyl RNA Chimeric Probes for Imaging Dynamic mRNA Processes in Living Cells

    No full text
    New approaches for imaging dynamic processes involving RNAs in living cells are continuously being developed and optimized. The use of molecular beacons synthesized from 2′-<i>O</i>-methylribonucleotides (which are resistant to cellular nucleases) is an established approach for visualizing native mRNAs in real time. In order to spatially and temporally resolve dynamic steps involving RNA in cells, molecular beacons need to efficiently hybridize to their RNA targets. To expand the repertoire of target sites accessible to molecular beacons, we decreased the length of their probe sequences and altered their backbone by the inclusion of LNA (locked nucleic acid) nucleotides. We named these new LNA/2′-<i>O</i>-methyl RNA chimera oligonucleotides “tiny molecular beacons”. We analyzed these tiny molecular beacons and found that the incorporation of just a few LNA nucleotides enables these shorter probes to stably anneal to more structured regions of the RNA than is possible with conventional molecular beacons. The ease of synthesis of tiny molecular beacons and the flexibility to couple them to a large variety of fluorophores and quenchers render them optimal for the detection of less abundant and/or highly structured RNAs. To determine their efficiency to detect endogenous mRNAs in live specimens, we designed tiny molecular beacons that were specific for <i>oskar</i> mRNA and microinjected them into living <i>Drosophila melanogaster</i> oocytes. We then imaged the live oocytes <i>via</i> spinning disk confocal microscopy. The results demonstrate that tiny molecular beacons hybridize to target mRNA at faster rates than classically designed molecular beacons and are able to access previously inaccessible target regions

    Tiny Molecular Beacons: LNA/2′-<i>O</i>-methyl RNA Chimeric Probes for Imaging Dynamic mRNA Processes in Living Cells

    No full text
    New approaches for imaging dynamic processes involving RNAs in living cells are continuously being developed and optimized. The use of molecular beacons synthesized from 2′-<i>O</i>-methylribonucleotides (which are resistant to cellular nucleases) is an established approach for visualizing native mRNAs in real time. In order to spatially and temporally resolve dynamic steps involving RNA in cells, molecular beacons need to efficiently hybridize to their RNA targets. To expand the repertoire of target sites accessible to molecular beacons, we decreased the length of their probe sequences and altered their backbone by the inclusion of LNA (locked nucleic acid) nucleotides. We named these new LNA/2′-<i>O</i>-methyl RNA chimera oligonucleotides “tiny molecular beacons”. We analyzed these tiny molecular beacons and found that the incorporation of just a few LNA nucleotides enables these shorter probes to stably anneal to more structured regions of the RNA than is possible with conventional molecular beacons. The ease of synthesis of tiny molecular beacons and the flexibility to couple them to a large variety of fluorophores and quenchers render them optimal for the detection of less abundant and/or highly structured RNAs. To determine their efficiency to detect endogenous mRNAs in live specimens, we designed tiny molecular beacons that were specific for <i>oskar</i> mRNA and microinjected them into living <i>Drosophila melanogaster</i> oocytes. We then imaged the live oocytes <i>via</i> spinning disk confocal microscopy. The results demonstrate that tiny molecular beacons hybridize to target mRNA at faster rates than classically designed molecular beacons and are able to access previously inaccessible target regions

    Tiny Molecular Beacons: LNA/2′-<i>O</i>-methyl RNA Chimeric Probes for Imaging Dynamic mRNA Processes in Living Cells

    No full text
    New approaches for imaging dynamic processes involving RNAs in living cells are continuously being developed and optimized. The use of molecular beacons synthesized from 2′-<i>O</i>-methylribonucleotides (which are resistant to cellular nucleases) is an established approach for visualizing native mRNAs in real time. In order to spatially and temporally resolve dynamic steps involving RNA in cells, molecular beacons need to efficiently hybridize to their RNA targets. To expand the repertoire of target sites accessible to molecular beacons, we decreased the length of their probe sequences and altered their backbone by the inclusion of LNA (locked nucleic acid) nucleotides. We named these new LNA/2′-<i>O</i>-methyl RNA chimera oligonucleotides “tiny molecular beacons”. We analyzed these tiny molecular beacons and found that the incorporation of just a few LNA nucleotides enables these shorter probes to stably anneal to more structured regions of the RNA than is possible with conventional molecular beacons. The ease of synthesis of tiny molecular beacons and the flexibility to couple them to a large variety of fluorophores and quenchers render them optimal for the detection of less abundant and/or highly structured RNAs. To determine their efficiency to detect endogenous mRNAs in live specimens, we designed tiny molecular beacons that were specific for <i>oskar</i> mRNA and microinjected them into living <i>Drosophila melanogaster</i> oocytes. We then imaged the live oocytes <i>via</i> spinning disk confocal microscopy. The results demonstrate that tiny molecular beacons hybridize to target mRNA at faster rates than classically designed molecular beacons and are able to access previously inaccessible target regions

    Tiny Molecular Beacons: LNA/2′-<i>O</i>-methyl RNA Chimeric Probes for Imaging Dynamic mRNA Processes in Living Cells

    No full text
    New approaches for imaging dynamic processes involving RNAs in living cells are continuously being developed and optimized. The use of molecular beacons synthesized from 2′-<i>O</i>-methylribonucleotides (which are resistant to cellular nucleases) is an established approach for visualizing native mRNAs in real time. In order to spatially and temporally resolve dynamic steps involving RNA in cells, molecular beacons need to efficiently hybridize to their RNA targets. To expand the repertoire of target sites accessible to molecular beacons, we decreased the length of their probe sequences and altered their backbone by the inclusion of LNA (locked nucleic acid) nucleotides. We named these new LNA/2′-<i>O</i>-methyl RNA chimera oligonucleotides “tiny molecular beacons”. We analyzed these tiny molecular beacons and found that the incorporation of just a few LNA nucleotides enables these shorter probes to stably anneal to more structured regions of the RNA than is possible with conventional molecular beacons. The ease of synthesis of tiny molecular beacons and the flexibility to couple them to a large variety of fluorophores and quenchers render them optimal for the detection of less abundant and/or highly structured RNAs. To determine their efficiency to detect endogenous mRNAs in live specimens, we designed tiny molecular beacons that were specific for <i>oskar</i> mRNA and microinjected them into living <i>Drosophila melanogaster</i> oocytes. We then imaged the live oocytes <i>via</i> spinning disk confocal microscopy. The results demonstrate that tiny molecular beacons hybridize to target mRNA at faster rates than classically designed molecular beacons and are able to access previously inaccessible target regions
    corecore