7 research outputs found

    Clinical study for classification of benign, dysplastic, and malignant oral lesions using autofluorescence spectroscopy

    No full text
    Autofluorescence spectroscopy shows promising results for detection and staging of oral (pre-)malignancies. To improve staging reliability, we develop and compare algorithms for lesion classification. Furthermore, we examine the potential for detecting invisible tissue alterations. Autofluorescence spectra are recorded at six excitation wavelengths from 172 benign, dysplastic, and cancerous lesions analysis (PCA), artificial neural networks, and red/green intensity ratio's to separate benign from (pre-)malignant lesions, using four normalization techniques. To assess the potential for detecting invisible tissue alterations, we compare PC scores of healthy mucosa and surroundings/contralateral positions of lesions. The spectra show large variations in shape and intensity within each lesion group. Intensities and PC score distributions demonstrate large overlap between benign and (pre-)malignant lesions. The receiver-operator characteristic areas under the curve (ROC-AUCs) for distinguishing cancerous from healthy tissue are excellent (0.90 to 0.97). However, the ROC-AUCs are too low for classification of benign versus (pre-)malignant mucosa for all methods (0.50 to 0.70). Some statistically significant differences between surrounding/contralateral tissues of benign and healthy tissue and of (pre-)malignant lesions are observed. We can successfully separate healthy mucosa from cancers (ROC-AUC>0.9). However, autofluorescence spectroscopy is not able to distinguish benign from visible (pre-)malignant lesions using our methods (ROC-AUC <0.65). The observed significant differences between healthy tissue and surroundings/contralateral positions of lesions might be useful for invisible tissue alteration detection. (C) 2004 Society of Photo-Optical Instrumentation Engineer

    Autofluorescence and diffuse reflectance spectroscopy for oral oncology

    No full text
    Background and Objectives: Autofluorescence and diffuse reflectance spectroscopy have been used separately and combined for tissue diagnostics. Previously, we assessed the value of autofluorescence spectroscopy for the classification of oral (pre-)malignancies. In the present study, we want to determine the contributions of diffuse reflectance and autofluorescence spectroscopy to diagnostic performance. Study Design/Materials and Methods: Autofluorescence and diffuse reflectance spectra were recorded from 172 oral lesions and 70 healthy volunteers. Autofluorescence, spectra were corrected in first order for blood absorption effects using diffuse reflectance spectra. Principal Components Analysis (PCA) with various classifiers was applied to distinguish (1) cancer and (2) all lesions from healthy oral mucosa, and (3) dysplastic and malignant lesions from benign lesions. Autofluorescence and diffuse reflectance spectra were evaluated separately and combined. Results: The classification of cancer versus healthy mucosa gave excellent results for diffuse reflectance as well as corrected autofluorescence (Receiver Operator Characteristic (ROC) areas up to 0.98). For both autofluorescence and diffuse reflectance spectra, the classification of lesions versus healthy mucosa was successful (ROC areas up to 0.90). However, the classification of benign and (pre-)malignant lesions was not successful for raw or corrected autofluorescence spectra (ROC areas <0.70). For diffuse reflectance spectra, the results were slightly better (ROC areas up to 0.77). Conclusions: The results for plain and corrected autofluorescence as well as diffuse reflectance spectra were similar. The relevant information for distinguishing lesions from healthy oral mucosa is probably sufficiently contained in blood absorption and scattering information, as well as in corrected autofluorescence. However, neither type of information is capable of distinguishing benign from dysplastic and malignant lesions. Combining autofluorescence and reflectance only slightly improved the results. (c) 2005 Wiley-Liss, In

    Association between night-time surgery and occurrence of intraoperative adverse events and postoperative pulmonary complications

    No full text
    Background: The aim of this post hoc analysis of a large cohort study was to evaluate the association between night-time surgery and the occurrence of intraoperative adverse events (AEs) and postoperative pulmonary complications (PPCs)
    corecore