452 research outputs found

    Traffic-responsive urban network control using multivariable regulators

    Get PDF
    The paper presents the philosophy, the aim, the development, the advantages, and the potential shortcomings of the TUC (Traffic-responsive Urban Control) strategy. Based on a store-and-forward modeling approach and using well-known methods of the Automatic Control Theory, the approach followed by TUC designs (off-line) and employs (on-line) a multivariable regulator for traffic-responsive co-ordinated network-wide signal control. Simulation investigations are used to demonstrate the efficiency of the proposed approach. Based on the presented investigations, summarising conclusions are drawn and future work is outlined

    Store-and-forward based methods for the signal control problem in large-scale congested urban road networks

    Get PDF
    The problem of designing network-wide traffic signal control strategies for large-scale congested urban road networks is considered. One known and two novel methodologies, all based on the store-and-forward modeling paradigm, are presented and compared. The known methodology is a linear multivariable feedback regulator derived through the formulation of a linear-quadratic optimal control problem. An alternative, novel methodology consists of an open-loop constrained quadratic optimal control problem, whose numerical solution is achieved via quadratic programming. Yet a different formulation leads to an open-loop constrained nonlinear optimal control problem, whose numerical solution is achieved by use of a feasible-direction algorithm. A preliminary simulation-based investigation of the signal control problem for a large-scale urban road network using these methodologies demonstrates the comparative efficiency and real-time feasibility of the developed signal control methods

    A rolling-horizon quadratic-programming approach to the signal control problem in large-scale congested urban road networks

    Get PDF
    The paper investigates the efficiency of a recently developed signal control methodology, which offers a computationally feasible technique for real-time network-wide signal control in large-scale urban traffic networks and is applicable also under congested traffic conditions. In this methodology, the traffic flow process is modeled by use of the store-and-forward modeling paradigm, and the problem of network-wide signal control (including all constraints) is formulated as a quadratic-programming problem that aims at minimizing and balancing the link queues so as to minimize the risk of queue spillback. For the application of the proposed methodology in real time, the corresponding optimization algorithm is embedded in a rolling-horizon (model-predictive) control scheme. The control strategy’s efficiency and real-time feasibility is demonstrated and compared with the Linear-Quadratic approach taken by the signal control strategy TUC (Traffic-responsive Urban Control) as well as with optimized fixed-control settings via their simulation-based application to the road network of the city centre of Chania, Greece, under a number of different demand scenarios. The comparative evaluation is based on various criteria and tools including the recently proposed fundamental diagram for urban network traffic

    A compact fission detector for fission-tagging neutron capture experiments with radioactive fissile isotopes

    Get PDF
    In the measurement of neutron capture cross-sections of fissile isotopes, the fission channel is a source of background which can be removed efficiently using the so-called fission-tagging or fission-veto technique. For this purpose a new compact and fast fission chamber has been developed. The design criteria and technical description of the chamber are given within the context of a measurement of the 233U(n, ) cross-section at the n_TOF facility at CERN, where it was coupled to the n_TOF Total Absorption Calorimeter. For this measurement the fission detector was optimized for time resolution, minimization of material in the neutron beam and for alpha-fission discrimination. The performance of the fission chamber and its application as a fission tagging detector are discussed.French NEEDS/NACRE ProjectEuropean Commission within HORIZON2020 via the EURATOM Project EUFRA

    Neutron-induced fission cross section of 234 U measured at the CERN n_TOF facility

    Get PDF
    The neutron-induced fission cross section of 234U has been measured at the CERN n-TOF facility relative to the standard fission cross section of 235U from 20 keV to 1.4 MeV and of 238U from 1.4 to 200 MeV. A fast ionization chamber (FIC) was used as a fission fragment detector with a detection efficiency of no less than 97%. The high instantaneous flux and the low background characterizing the n-TOF facility resulted in wide-energy-range data (0.02 to 200 MeV), with high energy resolution, high statistics, and systematic uncertainties bellow 3%. Previous investigations around the energy of the fission threshold revealed structures attributed to β-vibrational levels, which have been confirmed by the present measurements. Theoretical calculations have been performed, employing the talys code with model parameters tuned to fairly reproduce the experimental data

    Isomeric cross sections of fast-neutron induced reactions on 197^{197}Au

    Full text link
    Recent accurate data obtained for the isomeric cross section of the 197^{197}Au(n,2n)(n,2n) reaction provide a valuable opportunity to consider the question of the effective moment of inertia of the nucleus within a local consistent model analysis of all available reaction data for the 197^{197}Au target nucleus. Thus, a definite proof of a moment of inertia equal to that of the rigid--body has been obtained for 196^{196}Au nucleus while an inference of the half rigid--body value is suggested for the 194^{194}Ir nucleus. The usefulness of further measurements at incident energies up to \ge40 MeV has also been proved.Comment: 5 pages, 5 figure

    Investigation of the 240Pu(n, f ) reaction at the n_TOF/EAR2 facility in the 9 meV–6 MeV range

    Get PDF
    Background: Nuclear waste management is considered amongst the major challenges in the field of nuclear energy. A possible means of addressing this issue is waste transmutation in advanced nuclear systems, whose operation requires a fast neutron spectrum. In this regard, the accurate knowledge of neutron-induced reaction cross sections of several (minor) actinide isotopes is essential for design optimization and improvement of safety margins of such systems. One such case is 240 Pu , due to its accumulation in spent nuclear fuel of thermal reactors and its usage in fast reactor fuel. The measurement of the 240 Pu ( n , f ) cross section was previously attempted at the CERN n_TOF facility EAR1 measuring station using the time-of-flight technique. Due to the low amount of available material and the given flux at EAR1, the measurement had to last several months to achieve a sufficient statistical accuracy. This long duration led to detector deterioration due to the prolonged exposure to the high α activity of the fission foils, therefore the measurement could not be successfully completed. Purpose: It is aimed to determine whether it is feasible to study neutron-induced fission at n_TOF/EAR2 and provide data on the 240 Pu ( n , f ) reaction in energy regions requested for applications. Methods: The study of the 240 Pu ( n , f ) reaction was made at a new experimental area (EAR2) with a shorter flight path which delivered on average 30 times higher flux at fast neutron energies. This enabled the measurement to be performed much faster, thus limiting the exposure of the detectors to the intrinsic activity of the fission foils. The experimental setup was based on microbulk Micromegas detectors and the time-of-flight data were analyzed with an optimized pulse-shape analysis algorithm. Special attention was dedicated to the estimation of the non-negligible counting loss corrections with the development of a new methodology, and other corrections were estimated via Monte Carlo simulations of the experimental setup. Results: This new measurement of the 240 Pu ( n , f ) cross section yielded data from 9 meV up to 6 MeV incident neutron energy and fission resonance kernels were extracted up to 10 keV . Conclusions: Neutron-induced fission of high activity samples can be successfully studied at the n_TOF/EAR2 facility at CERN covering a wide range of neutron energies, from thermal to a few MeV.Croatian Science Foundation 857

    Present Status and Future Programs of the n_TOF Experiment

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.The most relevant measurements performed up to now and foreseen for the future will be presented in this contribution. The overall efficiency of the experimental program and the range of possible measurements achievable with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the n_TOF spallation target, might offer a substantial improvement in measurement sensitivities. A feasibility study of the possible realisation of the installation extension will be also presented
    corecore