32 research outputs found

    Local Structure Analysis in AbAb InitioInitio Liquid Water

    Full text link
    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion (vdW) interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyze the local structure in such highly accurate abab initioinitio liquid water. At ambient conditions, the LSI probability distribution, P(II), was unimodal with most water molecules characterized by more disordered high-density-like local environments. With thermal excitations removed, the resultant bimodal P(II) in the inherent potential energy surface (IPES) exhibited a 3:1 ratio between high- and low-density-like molecules, with the latter forming small connected clusters amid the predominant population. By considering the spatial correlations and hydrogen bond network topologies amongamong water molecules with the same LSI identities, we demonstrate that the signatures of the experimentally observed low- (LDA) and high-density (HDA) amorphous phases of ice are present in the IPES of ambient liquid water. Analysis of the LSI autocorrelation function uncovered a persistence time of \sim 4 ps---a finding consistent with the fact that natural thermal fluctuations are responsible for transitions between these distinct yet transient local aqueous environments in ambient liquid water.Comment: 12 pages, 6 figure

    Thermal Expansion in Dispersion-Bound Molecular Crystals

    Full text link
    We explore how anharmonicity, nuclear quantum effects (NQE), many-body dispersion interactions, and Pauli repulsion influence thermal properties of dispersion-bound molecular crystals. Accounting for anharmonicity with abab initioinitio molecular dynamics yields cell parameters accurate to within 2% of experiment for a set of pyridine-like molecular crystals at finite temperatures and pressures. From the experimental thermal expansion curve, we find that pyridine-I has a Debye temperature just above its melting point, indicating sizable NQE across the entire crystalline range of stability. We find that NQE lead to a substantial volume increase in pyridine-I (40\approx 40% more than classical thermal expansion at 153153 K) and attribute this to intermolecular Pauli repulsion promoted by intramolecular quantum fluctuations. When predicting delicate properties such as the thermal expansivity, we show that many-body dispersion interactions and sophisticated treatments of Pauli repulsion are needed in dispersion-bound molecular crystals

    Long-range correlation energy calculated from coupled atomic response functions

    Get PDF
    An accurate determination of the electron correlation energy is essential for describing the structure, stability, and function in a wide variety of systems, ranging from gas-phase molecular assemblies to condensed matter and organic/inorganic interfaces. Even small errors in the correlation energy can have a large impact on the description of chemical and physical properties in the systems of interest. In this context, the development of efficient approaches for the accurate calculation of the long-range correlation energy (and hence dispersion) is the main challenge. In the last years a number of methods have been developed to augment density functional approximations via dispersion energy corrections, but most of these approaches ignore the intrinsic many-body nature of correlation effects, leading to inconsistent and sometimes even qualitatively incorrect predictions. Here we build upon the recent many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.Comment: 15 pages, 3 figure

    Inverse design of disordered stealthy hyperuniform spin chains

    Full text link
    Positioned between crystalline solids and liquids, disordered many-particle systems which are stealthy and hyperuniform represent new states of matter that are endowed with novel physical and thermodynamic properties. Such stealthy and hyperuniform states are unique in that they are transparent to radiation for a range of wavenumbers around the origin. In this work, we employ recently developed inverse statistical-mechanical methods, which seek to obtain the optimal set of interactions that will spontaneously produce a targeted structure or configuration as a unique ground state, to investigate the spin-spin interaction potentials required to stabilize disordered stealthy hyperuniform one-dimensional (1D) Ising-like spin chains. By performing an exhaustive search over the spin configurations that can be enumerated on periodic 1D integer lattices containing N=2,3,,36N=2,3,\ldots,36 sites, we were able to identify and structurally characterize \textit{all} stealthy hyperuniform spin chains in this range of system sizes. Within this pool of stealthy hyperuniform spin configurations, we then utilized such inverse optimization techniques to demonstrate that stealthy hyperuniform spin chains can be realized as either unique or degenerate disordered ground states of radial long-ranged (relative to the spin chain length) spin-spin interactions. Such exotic ground states are distinctly different from spin glasses in both their inherent structural properties and the nature of the spin-spin interactions required to stabilize them. As such, the implications and significance of the existence of such disordered stealthy hyperuniform ground state spin systems warrants further study, including whether their bulk physical properties and excited states, like their many-particle system counterparts, are singularly remarkable, and can be experimentally realized.Comment: 11 pages, 9 figure

    Accurate molecular polarizabilities with coupled-cluster theory and machine learning

    Full text link
    The molecular polarizability describes the tendency of a molecule to deform or polarize in response to an applied electric field. As such, this quantity governs key intra- and inter-molecular interactions such as induction and dispersion, plays a key role in determining the spectroscopic signatures of molecules, and is an essential ingredient in polarizable force fields and other empirical models for collective interactions. Compared to other ground-state properties, an accurate and reliable prediction of the molecular polarizability is considerably more difficult as this response quantity is quite sensitive to the description of the underlying molecular electronic structure. In this work, we present state-of-the-art quantum mechanical calculations of the static dipole polarizability tensors of 7,211 small organic molecules computed using linear-response coupled-cluster singles and doubles theory (LR-CCSD). Using a symmetry-adapted machine-learning based approach, we demonstrate that it is possible to predict the molecular polarizability with LR-CCSD accuracy at a negligible computational cost. The employed model is quite robust and transferable, yielding molecular polarizabilities for a diverse set of 52 larger molecules (which includes challenging conjugated systems, carbohydrates, small drugs, amino acids, nucleobases, and hydrocarbon isomers) at an accuracy that exceeds that of hybrid density functional theory (DFT). The atom-centered decomposition implicit in our machine-learning approach offers some insight into the shortcomings of DFT in the prediction of this fundamental quantity of interest

    An unambiguous and robust formulation for Wannier localization

    Full text link
    We provide a new variational definition for the spread of an orbital under periodic boundary conditions (PBCs) that is continuous with respect to the gauge, consistent in the thermodynamic limit, well-suited to diffuse orbitals, and systematically adaptable to schemes computing localized Wannier functions. Existing definitions do not satisfy all these desiderata, partly because they depend on an "orbital center"-an ill-defined concept under PBCs. Based on this theoretical development, we showcase a robust and efficient (10x-70x fewer iterations) localization scheme across a range of materials.Comment: 11 pages, 6 figure

    Methylrhenium Trioxide Revisited: Mechanisms for Nonredox Oxygen Insertion in an M−CH_3 Bond

    Get PDF
    Methylrhenium trioxide (MTO) has the rare ability to stoichiometrically generate methanol at room temperature with an external oxidant (H_2O_2) under basic conditions. In order to use this transformation as a model for nonredox oxidative C−O coupling, the mechanisms have been elucidated using density functional theory (DFT). Our studies show several possible reaction pathways to form methanol, with the lowest net barrier (ΔH‡) being 23.3 kcal mol^(-1). The rate-determining step is a direct “Baeyer−Villiger” type concerted oxygen insertion into MTO, forming methoxyrhenium trioxide. The key to the low-energy transition state is the donation of electron density, first, from HOO(−) to the –CH_3 group (making –CH_3 more nucleophilic and HOO− more electrophilic) and, second, from the Re−C bond to both the forming Re−O and breaking O−O bonds, simultaneously (thus forming the Re−O bond as the Re−C bond is broken). In turn, the ability of MTO to undergo these transfers can be traced to the electrophilic nature of the metal center and to the absence of accessible d-orbitals. If accessible d-orbitals are present, they would most likely donate the required electron density instead of the M−CH_3 moiety, and this bond would thus not be broken. It is possible that other metal centers with similar qualities, such as Pt^(IV) or Ir^V, could be competent for the same type of chemistry

    Reliable and Practical Computational Prediction of Molecular Crystal Polymorphs

    Get PDF
    The ability to reliably predict the structures and stabilities of a molecular crystal and its polymorphs without any prior experimental information would be an invaluable tool for a number of fields, with specific and immediate applications in the design and formulation of pharmaceuticals. In this case, detailed knowledge of the polymorphic energy landscape for an active pharmaceutical ingredient yields profound insight regarding the existence and likelihood of late-appearing polymorphs. However, the computational prediction of the structures and stabilities of molecular crystal polymorphs is particularly challenging due to the high dimensionality of conformational and crystallographic space accompanied by the need for relative (free) energies to within \approx 1 kJ/mol per molecule. In this work, we combine the most successful crystal structure sampling strategy with the most accurate energy ranking strategy of the latest blind test of organic crystal structure prediction (CSP), organized by the Cambridge Crystallographic Data Centre (CCDC). Our final energy ranking is based on first-principles density functional theory (DFT) calculations that include three key physical contributions: (i) a sophisticated treatment of Pauli exchange-repulsion and electron correlation effects with hybrid functionals, (ii) inclusion of many-body van der Waals dispersion interactions, and (iii) account of vibrational free energies. In doing so, this combined approach has an optimal success rate in producing the crystal structures corresponding to the five blind-test molecules. With this practical approach, we demonstrate the feasibility of obtaining reliable structures and stabilities for molecular crystals of pharmaceutical importance, paving the way towards an enhanced fundamental understanding of polymorphic energy landscapes and routine industrial application of molecular CSP methods
    corecore