4,548 research outputs found
Finite driving rate and anisotropy effects in landslide modeling
In order to characterize landslide frequency-size distributions and
individuate hazard scenarios and their possible precursors, we investigate a
cellular automaton where the effects of a finite driving rate and the
anisotropy are taken into account. The model is able to reproduce observed
features of landslide events, such as power-law distributions, as
experimentally reported. We analyze the key role of the driving rate and show
that, as it is increased, a crossover from power-law to non power-law behaviors
occurs. Finally, a systematic investigation of the model on varying its
anisotropy factors is performed and the full diagram of its dynamical behaviors
is presented.Comment: 8 pages, 9 figure
HIV Drugs Inhibit Transfer of Plasmids Carrying Extended-Spectrum β-Lactamase and Carbapenemase Genes
More and more bacterial infections are becoming resistant to antibiotics. This has made treatment of many infections very difficult. One of the reasons this is such a large problem is that bacteria are able to share their genetic material with other bacteria, and these shared genes often include resistance to a variety of antibiotics, including some of our drugs of last resort. We are addressing this problem by using a fluorescence-based system to search for drugs that will stop bacteria from sharing resistance genes. We uncovered a new role for two drugs used to treat HIV and show that they are able to prevent the sharing of two different types of resistance genes in two unique bacterial strains. This work lays the foundation for future work to reduce the prevalence of resistant infections.Antimicrobial-resistant (AMR) infections pose a serious risk to human and animal health. A major factor contributing to this global crisis is the sharing of resistance genes between different bacteria via plasmids. The WHO lists Enterobacteriaceae, such as Escherichia coli and Klebsiella pneumoniae, producing extended-spectrum β-lactamases (ESBL) and carbapenemases as “critical” priorities for new drug development. These resistance genes are most often shared via plasmid transfer. However, finding methods to prevent resistance gene sharing has been hampered by the lack of screening systems for medium-/high-throughput approaches. Here, we have used an ESBL-producing plasmid, pCT, and a carbapenemase-producing plasmid, pKpQIL, in two different Gram-negative bacteria, E. coli and K. pneumoniae. Using these critical resistance-pathogen combinations, we developed an assay using fluorescent proteins, flow cytometry, and confocal microscopy to assess plasmid transmission inhibition within bacterial populations in a medium-throughput manner. Three compounds with some reports of antiplasmid properties were tested; chlorpromazine reduced transmission of both plasmids and linoleic acid reduced transmission of pCT. We screened the Prestwick library of over 1,200 FDA-approved drugs/compounds. From this, we found two nucleoside analogue drugs used to treat HIV, abacavir and azidothymidine (AZT), which reduced plasmid transmission (AZT, e.g., at 0.25 μg/ml reduced pCT transmission in E. coli by 83.3% and pKpQIL transmission in K. pneumoniae by 80.8% compared to untreated controls). Plasmid transmission was reduced by concentrations of the drugs which are below peak serum concentrations and are achievable in the gastrointestinal tract. These drugs could be used to decolonize humans, animals, or the environment from AMR plasmids
Tephra sedimentation and grainsize associated with pulsatory activity: the 2021 Tajogaite eruption of Cumbre Vieja (La Palma, Canary Islands, Spain)
Long-lasting eruptions are of complex characterization and are typically associated with challenging risk assessment and crisis management due to the usual occurrence of multiple interacting hazards evolving at different temporal and spatial scales (e.g., lava, tephra, and gas). The 2021 Tajogaite eruption of Cumbre Vieja (La Palma) demonstrated how even hybrid events that are mostly effusive can be associated with widespread and impacting tephra deposits as a result of a complex interplay among gas flux, conduit geometry, and magma feeding rate. In this novel study, direct observations, syn-eruptive and post-eruptive sampling, and statistical analysis of pulsatory activity have been combined to provide new insights into eruption dynamics. They show how rapid gas segregation and high magma ascent rate modulated the gas flux at multiple vents, resulting in short-time fluctuations among the different explosive styles (ash-poor gas puffing, Strombolian, violent Strombolian, and lava fountaining) and unsteady tephra ground accumulation. Various size-selective sedimentation processes were also observed, including particle aggregation and ash fingers, which have impacted the overall tephra dispersal. In fact, even though both local and total grainsize distributions of selected layers, units, and of the whole tephra blanket are unimodal with a low fine-ash content, grainsize analysis of 154 samples suggests no correlation of particles <63 ÎĽm with distance from vents. Our analyses demonstrate the need to include a detailed characterization of all products of hybrid eruptions for a comprehensive interpretation of eruptive dynamics and to use multiple classification strategies that can capture eruptive styles at different temporal scales
Eurofusion-DEMO Divertor - Cassette Design and Integration
The Eurofusion-DEMO design will complete the Pre Conceptual Design phase (PCD) with a PCD Gate, named G1, scheduled to take place in Q4 2020 that will focus on assessing the feasibility of the plant and its main components prior to entering into the Conceptual Design phase. In the paper first an overview is given of the Eurofusion-DEMO Divertor Assembly including design and interface description, systems and functional requirements, load specification, system classification, manufacturing procedures and cost estimate. Then critical issues are discussed and potential design solutions are proposed, e.g.: - Neutron material damage limits of the different (structural) materials present in the divertor assembly (as CuCrZr, Eurofer) and in the vacuum vessel (AISI 316 L(N)-IG); - Temperature hot spots in parts of the divertor assembly exposed to high nuclear heating and high heat radiation (from the plasma core or the separatrix) causing difficulties for active or passive cooling (e.g. cassette body structure, liner support structures, mechanical supports, divertor toroidal rails); - Arrangement and design of plasma-facing components and liner with pumping slot in the divertor cassette to enable pumping of exhaust gases from the lower port
Anti-HBV treatment induces novel reverse transcriptase mutations with reflective effect on HBV S antigen
The identification of novel reverse-transcriptase (RT) drug-resistance mutations is critical in predicting the probability of success to anti-HBV treatment. Furthermore, due to HBV-RT/HBsAg gene-overlap, they can have an impact on HBsAg-detection and quantification
The CERN PS multi-turn extraction based on beam splittting in stable islands of transverse phase space: Design Report
Since 2001 considerable effort has been devoted to the study of a possible replacement of the continuous-transfer extraction mode from the PS to the SPS. Such an approach, called Multi-Turn Extraction (MTE), is based on capture of the beam inside stable islands of transverse phase space, generated by sextupoles and octupoles, thanks to a properly chosen tune variation. Both numerical simulations and measurements with beam were performed to understand the properties of this new extraction mode. The experimental study was completed at the end of 2004 and by the end of 2005 a scheme to implement this novel approach in the PS machine was defined and its performance assessed. This design report presents the outcome of the studies undertaken both in terms of technical issues as well as of resources necessary to implement the proposed scheme
Hadron Energy Reconstruction for the ATLAS Calorimetry in the Framework of the Non-parametrical Method
This paper discusses hadron energy reconstruction for the ATLAS barrel
prototype combined calorimeter (consisting of a lead-liquid argon
electromagnetic part and an iron-scintillator hadronic part) in the framework
of the non-parametrical method. The non-parametrical method utilizes only the
known ratios and the electron calibration constants and does not require
the determination of any parameters by a minimization technique. Thus, this
technique lends itself to an easy use in a first level trigger. The
reconstructed mean values of the hadron energies are within of the
true values and the fractional energy resolution is . The value of the ratio
obtained for the electromagnetic compartment of the combined calorimeter is
and agrees with the prediction that for this
electromagnetic calorimeter. Results of a study of the longitudinal hadronic
shower development are also presented. The data have been taken in the H8 beam
line of the CERN SPS using pions of energies from 10 to 300 GeV.Comment: 33 pages, 13 figures, Will be published in NIM
The GAPS programme at TNG
context. the intrinsic variability due to the magnetic activity of young active stars is one of the main challenges in detecting and characterising exoplanets. the stellar activity is responsible for jitter effects observed both in photometric and spectroscopic observations that can impact our planetary detection sensitivity. aims. we present a method able to model the stellar photosphere and its surface inhomogeneities (starspots) in young, active, and fast-rotating stars based on the cross-correlation function (CCF) technique, and we extract information about the spot configuration of the star. methods. we developed Spot CCF, a tool able to model the deformation of the CCF profile due to the presence of multiple spots on the stellar surface. within the global architecture of planetary systems (GAPS) project at the telescopio nazionale galileo, we analysed more than 300 spectra of the young planet-hosting star V1298 tau provided by the HARPS-N high-resolution spectrograph. by applying the SpotCCF model to the CCFs, we extracted the spot configuration (latitude, longitude, and projected filling factor) of this star, and provide a new radial velocity (RV) time series for this target. results. we find that the features identified in the CCF profiles of V1298 tau are modulated by the stellar rotation, supporting our assumption that they are caused by starspots. the analysis suggests a differential rotation velocity of the star with lower rotation at higher latitudes. also, we find that SpotCCF provides an improvement in RV extraction, with a significantly lower dispersion with respect to the commonly used pipelines. this allows mitigation of the stellar activity contribution modulated with stellar rotation. a detection sensitivity test, involving the direct injection of a planetary signal into the data, confirms that the spotCCF model improves the sensitivity and ability to recover planetary signals. xconclusions. our method enables us to model the stellar photosphere and extract the spot configuration of young, active, and rapidly rotating stars. it also allows the extraction of optimised RV time series, thereby enhancing our detection capabilities for new exoplanets and advancing our understanding of stellar activity
New Materials and Technologies for Durability and Conservation of Building Heritage
The increase in concrete structures’ durability is a milestone to improve the sustainability of buildings and infrastructures. In order to ensure a prolonged service life, it is necessary to detect the deterioration of materials by means of monitoring systems aimed at evaluating not only the penetration of aggressive substances into concrete but also the corrosion of carbon-steel reinforcement. Therefore, proper data collection makes it possible to plan suitable restoration works which can be carried out with traditional or innovative techniques and materials. This work focuses on building heritage and it highlights the most recent findings for the conservation and restoration of reinforced concrete structures and masonry buildings
- …