3,855 research outputs found
Skeletons of stable maps II: Superabundant geometries
We implement new techniques involving Artin fans to study the realizability
of tropical stable maps in superabundant combinatorial types. Our approach is
to understand the skeleton of a fundamental object in logarithmic
Gromov--Witten theory -- the stack of prestable maps to the Artin fan. This is
used to examine the structure of the locus of realizable tropical curves and
derive 3 principal consequences. First, we prove a realizability theorem for
limits of families of tropical stable maps. Second, we extend the sufficiency
of Speyer's well-spacedness condition to the case of curves with good
reduction. Finally, we demonstrate the existence of liftable genus 1
superabundant tropical curves that violate the well-spacedness condition.Comment: 17 pages, 1 figure. v2 fixes a minor gap in the proof of Theorem D
and adds details to the construction of the skeleton of a toroidal Artin
stack. Minor clarifications throughout. To appear in Research in the
Mathematical Science
Conditional Hardness of Earth Mover Distance
The Earth Mover Distance (EMD) between two sets of points A, B subseteq R^d with |A| = |B| is the minimum total Euclidean distance of any perfect matching between A and B. One of its generalizations is asymmetric EMD, which is the minimum total Euclidean distance of any matching of size |A| between sets of points A,B subseteq R^d with |A| <= |B|. The problems of computing EMD and asymmetric EMD are well-studied and have many applications in computer science, some of which also ask for the EMD-optimal matching itself. Unfortunately, all known algorithms require at least quadratic time to compute EMD exactly. Approximation algorithms with nearly linear time complexity in n are known (even for finding approximately optimal matchings), but suffer from exponential dependence on the dimension.
In this paper we show that significant improvements in exact and approximate algorithms for EMD would contradict conjectures in fine-grained complexity. In particular, we prove the following results:
- Under the Orthogonal Vectors Conjecture, there is some c>0 such that EMD in Omega(c^{log^* n}) dimensions cannot be computed in truly subquadratic time.
- Under the Hitting Set Conjecture, for every delta>0, no truly subquadratic time algorithm can find a (1 + 1/n^delta)-approximate EMD matching in omega(log n) dimensions.
- Under the Hitting Set Conjecture, for every eta = 1/omega(log n), no truly subquadratic time algorithm can find a (1 + eta)-approximate asymmetric EMD matching in omega(log n) dimensions
- …