2,279 research outputs found

    Random Projections For Large-Scale Regression

    Full text link
    Fitting linear regression models can be computationally very expensive in large-scale data analysis tasks if the sample size and the number of variables are very large. Random projections are extensively used as a dimension reduction tool in machine learning and statistics. We discuss the applications of random projections in linear regression problems, developed to decrease computational costs, and give an overview of the theoretical guarantees of the generalization error. It can be shown that the combination of random projections with least squares regression leads to similar recovery as ridge regression and principal component regression. We also discuss possible improvements when averaging over multiple random projections, an approach that lends itself easily to parallel implementation.Comment: 13 pages, 3 Figure

    LS Peg: A Low-Inclination SW Sextantis-Type Cataclysmic Binary with High-Velocity Balmer Emission Line Wings

    Get PDF
    We present time-resolved spectroscopy and photometry of the bright cataclysmic variable LS Peg (= S193). The Balmer lines exhibit broad, asymmetric wings Doppler-shifted by about 2000 km/s at the edges, while the HeI lines show phase-dependent absorption features strikingly similar to SW Sextantis stars, as well as emission through most of the phase. The CIII/NIII emission blend does not show any phase dependence. From velocities of Halpha emission lines, we determine an orbital period of 0.174774 +/- 0.000003 d (= 4.1946 h), which agrees with Szkody's (1995) value of approximately 4.2 hours. No stable photometric signal was found at the orbital period. A non-coherent quasi-periodic photometric signal was seen at a period of 20.7 +/- 0.3 min. The high-velocity Balmer wings most probably arise from a stream re-impact point close to the white dwarf. We present simulated spectra based on a kinematic model similar to the modified disk-overflow scenario of Hellier & Robinson (1994). The models reproduce the broad line wings, though some other details are unexplained. Using an estimate of dynamical phase based on the model, we show that the phasing of the emission- and absorption-line variations is consistent with that in (eclipsing) SW Sex stars. We therefore identify LS Peg as a low-inclination SW Sex star. Our model suggests i = 30 deg, and the observed absence of any photometric signal at the orbital frequency establishes i < 60 deg. This constraint puts a severe strain on interpretations of the SW Sex phenomenon which rely on disk structures lying slightly out of the orbital plane.Comment: 29 pages, 13 figures, to be published in PASP Feb. 199

    Infrared spectroscopy of cataclysmic variables: III. Dwarf novae below the period gap and novalike variables

    Get PDF
    We present K-band spectra of the short-period dwarf novae YZ Cnc, LY Hya, BK Lyn, T Leo, SW UMa and WZ Sge, the novalike variables DW UMa, V1315 Aql, RW Tri, VY Scl, UU Aqr and GP Com, and a series of field dwarf stars with spectral types ranging from K2-M6. The spectra of the dwarf novae are dominated by emission lines of HI and HeI. The large velocity and equivalent widths of these lines, in conjunction with the fact that the lines are double-peaked in the highest inclination systems, indicate an accretion disc origin. In the case of YZ Cnc and T Leo, for which we obtained time-resolved data covering a complete orbital cycle, the emission lines show modulations in their equivalent widths which are most probably associated with the bright spot (the region where the gas stream collides with the accretion disc). There are no clear detections of the secondary star in any of the dwarf novae below the period gap, yielding upper limits of 10-30% for the contribution of the secondary star to the observed K-band flux. In conjunction with the K-band magnitudes of the dwarf novae, we use the derived secondary star contributions to calculate lower limits to the distances to these systems. The spectra of the novalike variables are dominated by broad, single-peaked emission lines of HI and HeI - even the eclipsing systems we observed do not show the double-peaked profiles predicted by standard accretion disc theory. With the exception of RW Tri, which exhibits NaI, CaI and 12CO absorption features consistent with a M0V secondary contributing 65% of the observed K-band flux, we find no evidence for the secondary star in any of the novalike variables. The implications of this result are discussed.Comment: 13 pages, 5 figures, to appear in MNRA

    Large-Scale Image Processing with the ROTSE Pipeline for Follow-Up of Gravitational Wave Events

    Full text link
    Electromagnetic (EM) observations of gravitational-wave (GW) sources would bring unique insights into a source which are not available from either channel alone. However EM follow-up of GW events presents new challenges. GW events will have large sky error regions, on the order of 10-100 square degrees, which can be made up of many disjoint patches. When searching such large areas there is potential contamination by EM transients unrelated to the GW event. Furthermore, the characteristics of possible EM counterparts to GW events are also uncertain. It is therefore desirable to be able to assess the statistical significance of a candidate EM counterpart, which can only be done by performing background studies of large data sets. Current image processing pipelines such as that used by ROTSE are not usually optimised for large-scale processing. We have automated the ROTSE image analysis, and supplemented it with a post-processing unit for candidate validation and classification. We also propose a simple ad hoc statistic for ranking candidates as more likely to be associated with the GW trigger. We demonstrate the performance of the automated pipeline and ranking statistic using archival ROTSE data. EM candidates from a randomly selected set of images are compared to a background estimated from the analysis of 102 additional sets of archival images. The pipeline's detection efficiency is computed empirically by re-analysis of the images after adding simulated optical transients that follow typical light curves for gamma-ray burst afterglows and kilonovae. We show that the automated pipeline rejects most background events and is sensitive to simulated transients to limiting magnitudes consistent with the limiting magnitude of the images

    The component masses of the cataclysmic variable V347 Puppis

    Get PDF
    We present time-resolved spectroscopy and photometry of the double-lined eclipsing cataclysmic variable V347 Pup (=LB 1800). There is evidence of irradiation on the inner hemisphere of the secondary star, which we correct for using a model to give a secondary-star radial velocity of KR= 198 ± 5 km s−1. The rotational velocity of the secondary star in V347 Pup is found to be v sin i= 131 ± 5 km s−1 and the system inclination is i= 840 ± 23. From these parameters we obtain masses of M1= 0.63 ± 0.04 M⊙ for the white dwarf primary and M2= 0.52 ± 0.06 M⊙ for the M0.5V secondary star, giving a mass ratio of q= 0.83 ± 0.05. On the basis of the component masses, and the spectral type and radius of the secondary star in V347 Pup, we find tentative evidence for an evolved companion. V347 Pup shows many of the characteristics of the SW Sex stars, exhibiting single-peaked emission lines, high-velocity S-wave components and phase-offsets in the radial velocity curve. We find spiral arms in the accretion disc of V347 Pup and measure the disc radius to be close to the maximum allowed in a pressureless disc

    A J-band detection of the donor star in the dwarf nova OY Carinae, and an optical detection of its `iron curtain'

    Get PDF
    Purely photometric models can be used to determine the binary parameters of eclipsing cataclysmic variables with a high degree of precision. However, the photometric method relies on a number of assumptions, and to date there have been very few independent checks of this method in the literature. We present time-resolved spectroscopy of the P=90.9 min eclipsing cataclysmic variable OY Carinae obtained with X-shooter on the VLT, in which we detect the donor star from K I lines in the J-band. We measure the radial velocity amplitude of the donor star K2 = 470.0 +/- 2.7 km/s, consistent with predictions based upon the photometric method (470 +/- 7 km/s). Additionally, the spectra obtained in the UVB arm of X-shooter show a series of Fe I and Fe II lines with a phase and velocity consistent with an origin in the accretion disc. This is the first unambiguous detection at optical wavelengths of the `iron curtain' of disc material which has been previously reported to veil the white dwarf in this system. The velocities of these lines do not track the white dwarf, reflecting a distortion of the outer disc that we see also in Doppler images. This is evidence for considerable radial motion in the outer disk, at up to 90 km/s towards and away from the white dwarf.Comment: MNRAS accepted. 11 pages with 10 figures and 2 table

    Studies on biology and behavior of Earias vittella (Lepidoptera: Noctuidae) for mechanisms of resistance in different cotton genotypes

    Get PDF
    Spotted bollworm, Earias vittella (Fab.), is one of the most important insect pests of cotton, and host plant resistance is an important component for the management of this pest. The antixenosis and antibiosis components of resistance to this pest in five Gossypium hirsutum (HS 6, HHH 81, PCHH 31, Somnath, SS 9) and one Gossypium arboreum (HD 107) genotypes were undertaken at 28±2°C and 70±5% relative humidity under laboratory conditions. The larval period ranged from 8.2 to 9.2 days on buds and 9.2-12.2 days on bolls of different cotton genotypes. The mean larval period irrespective of food was significantly shorter in G. arboreum as compared to G. hirsutum cultivars. Pre-oviposition period (2.42 days) was longer on G. arboreum genotype than on G. hirsutum genotypes (1.44-2.00 days), while the reverse was true for oviposition and post-oviposition periods. Larval survival, pupation, adult emergence, fecundity, incubation period, and egg hatchability were significantly lower on G. arboreum than on G. hirsutum. The first- and third-instar larvae of spotted bollworm preferred buds than bolls in both, G. arboreum and G. hirsutum genotypes. Multi-choice assays on larval preference for buds and bolls among different genotypes revealed that the preference for buds of G. arboreum was significantly higher by the first-instar and lower by the third-instar larvae than the G. hirsutum variety and hybrids. G. hirsutum cultivars were more preferred than the G. arboreum variety, and among the plant parts the lower leaf surface, buds and bolls were preferred over the other plant parts for egg laying by the female. The interactions between E. vittella larvae and cotton genotypes are quite diverse, and there is a distinct possibility for increasing the levels and diversifying the basis of resistance to this pest by intensive breeding program
    corecore