4 research outputs found

    Characterization of damper-to-damper wireless channel in small cars

    No full text
    The increasing use of Intra-Vehicular Wireless Sensor Networks (IVWSNs) in smart cars has enabled advances on Intelligent Transportation System (ITS) and also extended electric cars driving range by reducing cable weight. Intra-vehicular wireless systems have been characterized at 2.4 GHz and UHF bands. However, works on channel characterization of damper-to-damper wireless systems are still limited. This paper presents a damper-to-damper path loss characterization at 2.4 GHz frequency band for small cars. Dynamic on-field measurements on damper-to-damper antennas are used to derive path loss specification and coherence bandwidth for an intra-vehicular wireless communication system. Static measurements show the impact of antenna polarization in damper-to-damper path loss

    Characterization of damper-to-damper wireless channel in small cars

    No full text
    \u3cp\u3eThe increasing use of Intra-Vehicular Wireless Sensor Networks (IVWSNs) in smart cars has enabled advances on Intelligent Transportation System (ITS) and also extended electric cars driving range by reducing cable weight. Intra-vehicular wireless systems have been characterized at 2.4 GHz and UHF bands. However, works on channel characterization of damper-to-damper wireless systems are still limited. This paper presents a damper-to-damper path loss characterization at 2.4 GHz frequency band for small cars. Dynamic on-field measurements on damper-to-damper antennas are used to derive path loss specification and coherence bandwidth for an intra-vehicular wireless communication system. Static measurements show the impact of antenna polarization in damper-to-damper path loss.\u3c/p\u3

    Damper-to-damper path loss characterization for intra-vehicular wireless sensor networks

    No full text
    Intra-Vehicular Wireless Sensor Networks (IVWSNs) is one of the major advances in electrical smart cars. It could extend the driving distance of E-cars by reducing the weight of bulky cables. It can also bring more sensing functions, turning the car into smart units for Intelligent Transportation Systems (ITS). Until now, most works of IVWSNs channel characterization are focused on in-car wireless communication. This paper presents for the first time, to author's knowledge, the channel characterization of a non-line-of-sight damper-to-damper wireless communication at 2.4 GHz frequency band, including the signal reflection from ground. A method of 3D EM simulation is provided. Static and dynamic on-field car measurement is also performed on a commercial car with different road profiles. It shows that different road profiles equally impact path loss specification because of similar permittivity. From on-field measurements, it proves that 5.25 MHz frequency isolation leads to uncorrelated channels

    Damper-to-damper path loss characterization for intra-vehicular wireless sensor networks

    No full text
    \u3cp\u3eIntra-Vehicular Wireless Sensor Networks (IVWSNs) is one of the major advances in electrical smart cars. It could extend the driving distance of E-cars by reducing the weight of bulky cables. It can also bring more sensing functions, turning the car into smart units for Intelligent Transportation Systems (ITS). Until now, most works of IVWSNs channel characterization are focused on in-car wireless communication. This paper presents for the first time, to author's knowledge, the channel characterization of a non-line-of-sight damper-to-damper wireless communication at 2.4 GHz frequency band, including the signal reflection from ground. A method of 3D EM simulation is provided. Static and dynamic on-field car measurement is also performed on a commercial car with different road profiles. It shows that different road profiles equally impact path loss specification because of similar permittivity. From on-field measurements, it proves that 5.25 MHz frequency isolation leads to uncorrelated channels.\u3c/p\u3
    corecore