2 research outputs found

    Light-trapping structures for planar solar cells inspired by transformation optics

    Get PDF
    Optimal light absorption is decisive in obtaining high-efficiency solar cells. An established, if not to say the established, approach is to texture the interface of the light-absorbing layer with a suitable microstructure. However, structuring the light-absorbing layer is detrimental concerning its electrical properties due to an increased surface recombination rate (owing to enlarged surface area and surface defects) caused by the direct patterning process itself. This effect lowers the efficiency of the final solar cells. To circumvent this drawback, this work theoretically explores a transformation optics (TrO) inspired approach to map the nanopatterned texture onto a planar equivalent. This offers a pattern with the same optical functionality but with much improved electrical properties. Schwarz-Christoffel mappings are used for ensuring conformality of the maps. It leads to planar, inhomogeneous, dielectric-only materials for the light trapping structure to be placed on top of the planar light-absorbing layer. Such a design strategy paves a way towards a novel approach for implementing light-trapping structures into planar solar cells

    Antireflective Huygens’ Metasurface with Correlated Disorder Made from High-Index Disks Implemented into Silicon Heterojunction Solar Cells

    Get PDF
    A large variety of different strategies has been proposed as alternatives to random textures to improve light coupling into solar cells. While the understanding of dedicated nanophotonic systems deepens continuously, only a few of the proposed designs are industrially accepted due to a lack of scalability. In this Article, a tailored disordered arrangement of high-index dielectric submicron-sized titanium dioxide (TiO2_{2}) disks is experimentally exploited as an antireflective Huygens’ metasurface for standard heterojunction silicon solar cells. The disordered array is fabricated using a scalable bottom-up technique based on colloidal self-assembly that is applicable virtually irrespective of material or surface morphology of the device. We observe a broadband reduction of reflectance resulting in a relative improvement of a short-circuit current by 5.1% compared to a reference cell with an optimized flat antireflective indium tin oxide (ITO) layer. A theoretical model based on Born’s first approximation is proposed that links the current increase in the arrangement of disks expressed in terms of the structure factor S(q) of the disk array. Additionally, we discuss the optical performance of the metasurface within the framework of helicity preservation, which can be achieved at specific wavelengths for an isolated disk for illumination along the symmetry axis by tuning its dimensions. By comparison to a simulated periodic metasurface, we show that this framework is applicable in the case of the structure factor approaching zero and the disks’ arrangement becoming stealthy hyperuniform
    corecore