3,490 research outputs found

    Nonequilibrium Phase Transitions in a Driven Sandpile Model

    Get PDF
    We construct a driven sandpile slope model and study it by numerical simulations in one dimension. The model is specified by a threshold slope \sigma_c\/, a parameter \alpha\/, governing the local current-slope relation (beyond threshold), and jinj_{\rm in}, the mean input current of sand. A nonequilibrium phase diagram is obtained in the \alpha\, -\, j_{\rm in}\/ plane. We find an infinity of phases, characterized by different mean slopes and separated by continuous or first-order boundaries, some of which we obtain analytically. Extensions to two dimensions are discussed.Comment: 11 pages, RevTeX (preprint format), 4 figures available upon requs

    The Irreducible String and an Infinity of Additional Constants of Motion in a Deposition-Evaporation Model on a Line

    Get PDF
    We study a model of stochastic deposition-evaporation with recombination, of three species of dimers on a line. This model is a generalization of the model recently introduced by Barma {\it et. al.} (1993 {\it Phys. Rev. Lett.} {\bf 70} 1033) to q3q\ge 3 states per site. It has an infinite number of constants of motion, in addition to the infinity of conservation laws of the original model which are encoded as the conservation of the irreducible string. We determine the number of dynamically disconnected sectors and their sizes in this model exactly. Using the additional symmetry we construct a class of exact eigenvectors of the stochastic matrix. The autocorrelation function decays with different powers of tt in different sectors. We find that the spatial correlation function has an algebraic decay with exponent 3/2, in the sector corresponding to the initial state in which all sites are in the same state. The dynamical exponent is nontrivial in this sector, and we estimate it numerically by exact diagonalization of the stochastic matrix for small sizes. We find that in this case z=2.39±0.05z=2.39\pm0.05.Comment: Some minor errors in the first version has been correcte

    Magnetic properties and complex magnetic phase diagram in non centrosymmetric EuRhGe3_3 and EuIrGe3_3 single crystals

    Get PDF
    We report the magnetic properties of two Eu based compounds, single crystalline EuIrGe3_3 and EuRhGe3_3, inferred from magnetisation, electrical transport, heat capacity and 151^{151}Eu M\"{o}ssbauer spectroscopy. These previously known compounds crystallise in the non-centrosymmetric, tetragonal, I4mmI4mm, BaNiSn3_3-type structure. Single crystals of EuIrGe3_3 and EuRhGe3_3 were grown using high temperature solution growth method using In as flux. EuIrGe3_3 exhibits two magnetic orderings at TN1T_{\rm N1} = 12.4 K, and TN2T_{\rm N2} = 7.3 K. On the other hand EuRhGe3_3 presents a single magnetic transition with a TNT_{\rm N} = 12 K. 151^{151}Eu M\"{o}ssbauer spectra present evidence for a cascade of transitions from paramagnetic to incommensurate amplitude modulated followed by an equal moment antiferromagnetic phase at lower temperatures in EuIrGe3_3, the transitions having a substantial first order character. On the other hand the 151^{151}Eu M\"{o}ssbauer spectra at 4.2 and 9 K in EuRhGe3_3 present evidence of a single magnetic transition. In both compounds a superzone gap is observed for the current density JJ\parallel [001], which enhances with transverse magnetic field. The magnetisation measured up to 14 T shows the occurrence of field induced transitions, which are well documented in the magnetotransport data as well. The magnetic phase diagram constructed from these data is complex, revealing the presence of many phases in the HTH-T phase space

    Anisotropic magnetic and superconducting properties of pure and Co-doped CaFe2_2As2_2 single crystals

    Full text link
    We report anisotropic dc magnetic susceptibility χ(T)\chi(T), electrical resistivity ρ(T)\rho(T), and heat capacity C(T)C(T) measurements on the single crystals of CaFe2x_{2-x}Cox_xAs2_2 for xx = 0 and 0.06. Large sized single crystals were grown by the high temperature solution method with Sn as the solvent. For the pure compound with xx = 0, a high temperature transition at 170 K is observed which is attributed to a combined spin density wave (SDW) ordering and a structural phase transition. On the other hand, for the Co-doped samples for xx = 0.06, the SDW transition is suppressed while superconductivity is observed at \simeq17 K. The superconducting transition has been confirmed from the magnetization and electrical resistivity studies. The 57^{57}Fe M\"ossbauer spectrum in CaFe2_2As2_2 indicates that the SDW ordering is incommensurate. In the Co-doped sample, a prominent paramagnetic line at 4.2 K is observed indicating a weakening of the SDW state.Comment: 4 pages 5 figures. Submitted to Phys. Rev.

    Non-perturbative corrections to mean-field behavior: spherical model on spider-web graph

    Full text link
    We consider the spherical model on a spider-web graph. This graph is effectively infinite-dimensional, similar to the Bethe lattice, but has loops. We show that these lead to non-trivial corrections to the simple mean-field behavior. We first determine all normal modes of the coupled springs problem on this graph, using its large symmetry group. In the thermodynamic limit, the spectrum is a set of δ\delta-functions, and all the modes are localized. The fractional number of modes with frequency less than ω\omega varies as exp(C/ω)\exp (-C/\omega) for ω\omega tending to zero, where CC is a constant. For an unbiased random walk on the vertices of this graph, this implies that the probability of return to the origin at time tt varies as exp(Ct1/3)\exp(- C' t^{1/3}), for large tt, where CC' is a constant. For the spherical model, we show that while the critical exponents take the values expected from the mean-field theory, the free-energy per site at temperature TT, near and above the critical temperature TcT_c, also has an essential singularity of the type exp[K(TTc)1/2]\exp[ -K {(T - T_c)}^{-1/2}].Comment: substantially revised, a section adde
    corecore