24 research outputs found
From âSerum Sicknessâ to âXenosialitisâ: Past, Present, and Future Significance of the Non-human Sialic Acid Neu5Gc
The description of âserum sicknessâ more than a century ago in humans transfused with animal sera eventually led to identification of a class of human antibodies directed against glycans terminating in the common mammalian sialic acid N-Glycolylneuraminic acid (Neu5Gc), hereafter called âNeu5Gc-glycans.â The detection of such glycans in malignant and fetal human tissues initially raised the possibility that it was an oncofetal antigen. However, âserum sicknessâ antibodies were also noted in various human disease states. These findings spurred further research on Neu5Gc, and the discovery that it is not synthesized in the human body due to a human-lineage specific genetic mutation in the enzyme CMAH. However, with more sensitive techniques Neu5Gc-glycans were detected in smaller quantities on certain human cell types, particularly epithelia and endothelia. The likely explanation is metabolic incorporation of Neu5Gc from dietary sources, especially red meat of mammalian origin. This incorporated Neu5Gc on glycans appears to be the first example of a âxeno-autoantigen,â against which varying levels of âxeno-autoantibodiesâ are present in all humans. The resulting chronic inflammation or âxenosialitisâ may have important implications in human health and disease, especially in conditions known to be aggravated by consumption of red meat. In this review, we will cover the early history of the discovery of âserum sicknessâ antibodies, the subsequent recognition that they were partly directed against Neu5Gc-glycans, the discovery of the genetic defect eliminating Neu5Gc production in humans, and the later recognition that this was not an oncofetal antigen but the first example of a âxeno-autoantigen.â Further, we will present comments about implications for disease risks associated with red meat consumption such as cancer and atherosclerosis. We will also mention the potential utility of these anti-Neu5Gc-glycan antibodies in cancer immunotherapy and provide some suggestions and perspectives for the future. Other reviews in this special issue cover many other aspects of this unusual pathological process, for which there appears to be no other described precedent
Recommended from our members
Sialoglycan recognition is a common connection linking acidosis, zinc, and HMGB1 in sepsis
© 2021 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/Blood pH is tightly maintained between 7.35 and 7.45, and acidosis (pH <7.3) indicates poor prognosis in sepsis, wherein lactic acid from anoxic tissues overwhelms the buffering capacity of blood. Poor sepsis prognosis is also associated with low zinc levels and the release of High mobility group box 1 (HMGB1) from activated and/or necrotic cells. HMGB1 added to whole blood at physiological pH did not bind leukocyte receptors, but lowering pH with lactic acid to mimic sepsis conditions allowed binding, implying the presence of natural inhibitor(s) preventing binding at normal pH. Testing micromolar concentrations of divalent cations showed that zinc supported the robust binding of sialylated glycoproteins with HMGB1. Further characterizing HMGB1 as a sialic acid-binding lectin, we found that optimal binding takes place at normal blood pH and is markedly reduced when pH is adjusted with lactic acid to levels found in sepsis. Glycan array studies confirmed the binding of HMGB1 to sialylated glycan sequences typically found on plasma glycoproteins, with binding again being dependent on zinc and normal blood pH. Thus, HMGB1-mediated hyperactivation of innate immunity in sepsis requires acidosis, and micromolar zinc concentrations are protective. We suggest that the potent inflammatory effects of HMGB1 are kept in check via sequestration by plasma sialoglycoproteins at physiological pH and triggered when pH and zinc levels fall in late stages of sepsis. Current clinical trials independently studying zinc supplementation, HMGB1 inhibition, or pH normalization may be more successful if these approaches are combined and perhaps supplemented by infusions of heavily sialylated molecules.Peer reviewe
Recommended from our members
Thiopurine monotherapy is effective in ulcerative colitis but significantly less so in Crohnâs disease: long-term outcomes for 11 928 patients in the UK inflammatory bowel disease bioresource
Objective: Thiopurines are widely used as maintenance therapy in inflammatory bowel disease (IBD) but the evidence base for their use is sparse and their role increasingly questioned. Using the largest series reported to date, we assessed the long-term effectiveness of thiopurines in ulcerative colitis (UC) and Crohnâs disease (CD), including their impact on need for surgery. Design: Outcomes were assessed in 11 928 patients (4968 UC, 6960 CD) in the UK IBD BioResource initiated on thiopurine monotherapy with the intention of maintaining medically induced remission. Effectiveness was assessed retrospectively using patient-level data and a definition that required avoidance of escalation to biological therapy or surgery while on thiopurines. Analyses included overall effectiveness, time-to-event analysis for treatment escalation and comparison of surgery rates in patients tolerant or intolerant of thiopurines. Results: Using 68 132 patient-years of exposure, thiopurine monotherapy appeared effective for the duration of treatment in 2617/4968 (52.7%) patients with UC compared with 2378/6960 (34.2%) patients with CD (p<0.0001). This difference was corroborated in a multivariable analysis: after adjusting for variables including treatment era, thiopurine monotherapy was less effective in CD than UC (OR 0.47, 95% CI 0.43 to 0.51, p<0.0001). Thiopurine intolerance was associated with increased risk of surgery in UC (HR 2.44, p<0.0001); with a more modest impact on need for surgery in CD (HR=1.23, p=0.0015). Conclusion: Thiopurine monotherapy is an effective long-term treatment for UC but significantly less effective in CD
Recommended from our members
Testing for latent tuberculosis before starting patients on immune checkpoint inhibitors
Recommended from our members
Testing for latent tuberculosis before starting patients on immune checkpoint inhibitors
Recommended from our members
Chimney Sweepsâ Cancer in the 18th Century or the 21st Century Covid-19 Pandemic: How Hand-washing Has Been, Is, and Will Be the Simplest Epidemiological Intervention
Recommended from our members
Chimney Sweepsâ Cancer in the 18th Century or the 21st Century Covid-19 Pandemic: How Hand-washing Has Been, Is, and Will Be the Simplest Epidemiological Intervention
Recommended from our members
Human species-specific loss of CMP-N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms.
Cardiovascular disease (CVD) events due to atherosclerosis cause one-third of worldwide deaths and risk factors include physical inactivity, age, dyslipidemia, hypertension, diabetes, obesity, smoking, and red meat consumption. However, âŒ15% of first-time events occur without such factors. In contrast, coronary events are extremely rare even in closely related chimpanzees in captivity, despite human-like CVD-risk-prone blood lipid profiles, hypertension, and mild atherosclerosis. Similarly, red meat-associated enhancement of CVD event risk does not seem to occur in other carnivorous mammals. Thus, heightened CVD risk may be intrinsic to humans, and genetic changes during our evolution need consideration. Humans exhibit a species-specific deficiency of the sialic acid N-glycolylneuraminic acid (Neu5Gc), due to pseudogenization of cytidine monophosphate-N-acetylneuraminic acid (Neu5Ac) hydroxylase (CMAH), which occurred in hominin ancestors âŒ2 to 3 Mya. Ldlr -/- mice with human-like Cmah deficiency fed a sialic acids (Sias)-free high-fat diet (HFD) showed âŒ1.9-fold increased atherogenesis over Cmah wild-type Ldlr -/- mice, associated with elevated macrophage cytokine expression and enhanced hyperglycemia. Human consumption of Neu5Gc (from red meat) acts as a "xeno-autoantigen" via metabolic incorporation into endogenous glycoconjugates, as interactions with circulating anti-Neu5Gc "xeno-autoantibodies" potentiate chronic inflammation ("xenosialitis"). Cmah -/- Ldlr -/- mice immunized with Neu5Gc-bearing antigens to generate human-like anti-Neu5Gc antibodies suffered a âŒ2.4-fold increased atherosclerosis on a Neu5Gc-rich HFD, compared with Neu5Ac-rich or Sias-free HFD. Lesions in Neu5Gc-immunized and Neu5Gc-rich HFD-fed Cmah -/- Ldlr -/- mice were more advanced but unexplained by lipoprotein or glucose changes. Human evolutionary loss of CMAH likely contributes to atherosclerosis predisposition via multiple intrinsic and extrinsic mechanisms, and future studies could consider this more human-like model