65 research outputs found
Interventions for behaviour change and self-management in stroke secondary prevention: protocol for an overview of reviews
Abstract Background Stroke secondary prevention guidelines recommend medication prescription and adherence, active education and behavioural counselling regarding lifestyle risk factors. To impact on recurrent vascular events, positive behaviour/s must be adopted and sustained as a lifestyle choice, requiring theoretically informed behaviour change and self-management interventions. A growing number of systematic reviews have addressed complex interventions in stroke secondary prevention. Differing terminology, inclusion criteria and overlap of studies between reviews makes the mechanism/s that affect positive change difficult to identify or replicate clinically. Adopting a two-phase approach, this overview will firstly comprehensively summarise systematic reviews in this area and secondly identify and synthesise primary studies in these reviews which provide person-centred, theoretically informed interventions for stroke secondary prevention. Methods An overview of reviews will be conducted using a systematic search strategy across the Cochrane Database of Systematic Reviews, PubMed and Epistomonikas. Inclusion criteria: systematic reviews where the population comprises individuals post-stroke or TIA and where data relating to person-centred risk reduction are synthesised for evidence of efficacy when compared to standard care or no intervention. Primary outcomes of interest include mortality, recurrent stroke and other cardiovascular events. In phase 1, two reviewers will independently (1) assess the eligibility of identified reviews for inclusion; (2) rate the quality of included reviews using the ROBIS tool; (3) identify unique primary studies and overlap between reviews; (4) summarise the published evidence supporting person-centred behavioural change and self-management interventions in stroke secondary prevention and (5) identify evidence gaps in this field. In phase 2, two independent reviewers will (1) examine person-centred, primary studies in each review using the Template for Intervention Description and Replication (TIDieR checklist), itemising, where present, theoretical frameworks underpinning interventions; (2) group studies employing theoretically informed interventions by the intervention delivered and by the outcomes reported (3) apply GRADE quality of evidence for each intervention by outcome/s identified from theoretically informed primary studies. Disagreement between reviewers at each process stage will be discussed and a third reviewer consulted. Discussion This overview will comprehensively bring together the best available evidence supporting person-centred, stroke secondary prevention strategies in an accessible format, identifying current knowledge gaps
Atrial arrhythmogenicity of KCNJ2 mutations in short QT syndrome: Insights from virtual human atria
Gain-of-function mutations in KCNJ2-encoded Kir2.1 channels underlie variant 3 (SQT3) of the short QT syndrome, which is associated with atrial fibrillation (AF). Using biophysically-detailed human atria computer models, this study investigated the mechanistic link between SQT3 mutations and atrial arrhythmogenesis, and potential ion channel targets for treatment of SQT3. A contemporary model of the human atrial action potential (AP) was modified to recapitulate functional changes in IK1 due to heterozygous and homozygous forms of the D172N and E299V Kir2.1 mutations. Wild-type (WT) and mutant formulations were incorporated into multi-scale homogeneous and heterogeneous tissue models. Effects of mutations on AP duration (APD), conduction velocity (CV), effective refractory period (ERP), tissue excitation threshold and their rate-dependence, as well as the wavelength of re-entry (WL) were quantified. The D172N and E299V Kir2.1 mutations produced distinct effects on IK1 and APD shortening. Both mutations decreased WL for re-entry through a reduction in ERP and CV. Stability of re-entrant excitation waves in 2D and 3D tissue models was mediated by changes to tissue excitability and dispersion of APD in mutation conditions. Combined block of IK1 and IKr was effective in terminating re-entry associated with heterozygous D172N conditions, whereas IKr block alone may be a safer alternative for the E299V mutation. Combined inhibition of IKr and IKur produced a synergistic anti-arrhythmic effect in both forms of SQT3. In conclusion, this study provides mechanistic insights into atrial proarrhythmia with SQT3 Kir2.1 mutations and highlights possible pharmacological strategies for management of SQT3-linked AF
Insulin and IGF1 signalling pathways in human astrocytes <i>in vitro</i> and <i>in vivo</i>; characterisation, subcellular localisation and modulation of the receptors.
Background
The insulin/IGF1 signalling (IIS) pathways are involved in longevity regulation and are dysregulated in neurons in Alzheimerâs disease (AD). We previously showed downregulation in IIS gene expression in astrocytes with AD-neuropathology progression, but IIS in astrocytes remains poorly understood. We therefore examined the IIS pathway in human astrocytes and developed models to reduce IIS at the level of the insulin or the IGF1 receptor (IGF1R).
Results
We determined IIS was present and functional in human astrocytes by immunoblotting and showed astrocytes express the insulin receptor (IR)-B isoform of Ir. Immunocytochemistry and cell fractionation followed by western blotting revealed the phosphorylation status of insulin receptor substrate (IRS1) affects its subcellular localisation. To validate IRS1 expression patterns observed in culture, expression of key pathway components was assessed on post-mortem AD and control tissue using immunohistochemistry. Insulin signalling was impaired in cultured astrocytes by treatment with insulinâ+âfructose and resulted in decreased IR and Akt phosphorylation (pAkt S473). A monoclonal antibody against IGF1R (MAB391) induced degradation of IGF1R receptor with an associated decrease in downstream pAkt S473. Neither treatment affected cell growth or viability as measured by MTT and CyquantÂź assays or GFAP immunoreactivity.
Discussion
IIS is functional in astrocytes. IR-B is expressed in astrocytes which differs from the pattern in neurons, and may be important in differential susceptibility of astrocytes and neurons to insulin resistance. The variable presence of IRS1 in the nucleus, dependent on phosphorylation pattern, suggests the function of signalling molecules is not confined to cytoplasmic cascades. Down-regulation of IR and IGF1R, achieved by insulinâ+âfructose and monoclonal antibody treatments, results in decreased downstream signalling, though the lack of effect on viability suggests that astrocytes can compensate for changes in single pathways. Changes in signalling in astrocytes, as well as in neurons, may be important in ageing and neurodegeneration
- âŠ