4,317 research outputs found
The Allergic Factor in Idiopathic Epilepsy
1. The nature of allergy and its possible connection with epilepsy is discussed and a review presented of the literature on the subject. 2. Critical observations have been made on the technique of skin testing and a search instituted for the ideal method as applied to the present work. 3. Investigations have been conducted into the personal and family histories of seventy-two individuals in a search for allergic manifestations. 4. The case records of fourteen epileptics are presented in some detail, each of the series being skin tested, dermally and intradermally, and results tabulated. 5. The treatment of allergy is critically reviewed and a method adopted combining specific elimination and specific desensitization, while the Eosinophilic index is suggested as a means of guiding dosage. 6. Six epileptics have been given a course of specific intramuscular injections controlled by eosinophilic readings, and a second six given a similar course but uncontrolled by such observations. 7. Two further series of skin tests have been carried out, one immediately following treatment and the other three months later. 8. Finally, results are assessed and conclusions inferred
Community change initiatives from 1990-2010: accomplishments and implications for future work
Community development
Bifurcation in electrostatic resistive drift wave turbulence
The Hasegawa-Wakatani equations, coupling plasma density and electrostatic
potential through an approximation to the physics of parallel electron motions,
are a simple model that describes resistive drift wave turbulence. We present
numerical analyses of bifurcation phenomena in the model that provide new
insights into the interactions between turbulence and zonal flows in the
tokamak plasma edge region. The simulation results show a regime where, after
an initial transient, drift wave turbulence is suppressed through zonal flow
generation. As a parameter controlling the strength of the turbulence is tuned,
this zonal flow dominated state is rapidly destroyed and a turbulence-dominated
state re-emerges. The transition is explained in terms of the Kelvin-Helmholtz
stability of zonal flows. This is the first observation of an upshift of
turbulence onset in the resistive drift wave system, which is analogous to the
well-known Dimits shift in turbulence driven by ion temperature gradients.Comment: 21 pages, 11 figure
Combining mechanism and drift in community ecology: a novel statistical mechanics approach
A key challenge for models of community ecology is to combine deterministic mechanism and stochastic drift in a systematic, transparent and tractable manner. Another challenge is to explain and unify different ecological patterns, hitherto modelled in isolation, within a single modelling framework. Here, we show that statistical mechanics provides an effective way to meet both challenges. We apply the statistical principle of maximum entropy (MaxEnt) to a simple resource-based, non-neutral model of a plant community. In contrast to previous ecological applications of MaxEnt, our use of MaxEnt emphasises its theoretical basis in the combinatorics of sampling frequencies, an approach that clarifies its ecological interpretation. In this approach, mechanism and drift are identified, respectively, with ecological resource constraints and entropy maximization. We obtain realistic predictions for species abundance distributions as well as contrasting stability-diversity relationships at community and population levels. The model also predicts critical behaviour that may provide a basis for understanding desertification and other ecological tipping points. Our results complement and extend previous ecological applications of MaxEnt to new areas of community ecology, and further illustrate MaxEnt as a powerful yet simple modelling tool for combining mechanism and drift in a way that unifies disparate ecological patterns
Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas
The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning)
modes in strongly nonaxisymmetric toroidal systems is difficult to analyze
numerically owing to the singular nature of ideal MHD caused by lack of an
inherent scale length. In this paper, ideal MHD is regularized by using a
-space cutoff, making the ray tracing for the WKB ballooning formalism a
chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier
spectrum needed for resolving toroidally localized ballooning modes with a
global eigenvalue code is estimated from the Weyl formula. This
phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication
in Phys. Rev. Letter
A comparison of incompressible limits for resistive plasmas
The constraint of incompressibility is often used to simplify the
magnetohydrodynamic (MHD) description of linearized plasma dynamics because it
does not affect the ideal MHD marginal stability point. In this paper two
methods for introducing incompressibility are compared in a cylindrical plasma
model: In the first method, the limit is taken, where
is the ratio of specific heats; in the second, an anisotropic mass
tensor is used, with the component parallel to the magnetic
field taken to vanish, . Use of resistive MHD reveals
the nature of these two limits because the Alfv\'en and slow magnetosonic
continua of ideal MHD are converted to point spectra and moved into the complex
plane. Both limits profoundly change the slow-magnetosonic spectrum, but only
the second limit faithfully reproduces the resistive Alfv\'en spectrum and its
wavemodes. In ideal MHD, the slow magnetosonic continuum degenerates to the
Alfv\'en continuum in the first method, while it is moved to infinity by the
second. The degeneracy in the first is broken by finite resistivity. For
numerical and semi-analytical study of these models, we choose plasma
equilibria which cast light on puzzling aspects of results found in earlier
literature.Comment: 14 pages, 10 figure
- …