103 research outputs found

    Refined cytogenetic-risk categorization for overall and leukemia-free survival in primary myelofibrosis: a single center study of 433 patients

    Get PDF
    We have previously identified sole +9, 13q- or 20q-, as ‘favorable' and sole +8 or complex karyotype as ‘unfavorable' cytogenetic abnormalities in primary myelofibrosis (PMF). In this study of 433 PMF patients, we describe additional sole abnormalities with favorable (chromosome 1 translocations/duplications) or unfavorable (−7/7q-) prognosis and also show that other sole or two abnormalities that do not include i(17q), −5/5q-, 12p-, inv(3) or 11q23 rearrangement are prognostically aligned with normal karyotype, which is prognostically favorable. These findings were incorporated into a refined two-tired cytogenetic-risk stratification: unfavorable and favorable karyotype. The respective 5-year survival rates were 8 and 51% (hazard ratio (HR): 3.1, 95% confidence interval (CI): 2.2–4.3; P<0.0001). Multivariable analysis confirmed the International Prognostic Scoring System (IPSS)-independent prognostic value of cytogenetic-risk categorization and also identified thrombocytopenia (platelets <100 × 109/l) as another independent predictor of inferior survival (P<0.0001). A similar multivariable analysis showed that karyotype (P=0.001) and platelet count (P=0.04), but not IPSS (P=0.27), predicted leukemia-free survival; the 5-year leukemic transformation rates for unfavorable versus favorable karyotype were 46 and 7% (HR: 5.5, 95% CI: 2.5–12.0; P<0.0001). This study provides the rationale and necessary details for incorporating cytogenetic findings and platelet count in future prognostic models for PMF

    Molecular classification improves risk assessment in adult BCR-ABL1–negative B-ALL

    Get PDF
    Genomic classification has improved risk assignment of pediatric but not adult B-lineage acute lymphoblastic leukemia (B-ALL). The international UKALLXII/ECOG-ACRIN E2993 (NCT00002514) trial accrued 1229 BCR-ABL1-negative adolescent/adult B-ALL patients (aged 14-65 years). While 93% of patients achieved remission, 41% relapsed at a median of 13 months (range 28 days to 12 years). Five-year overall survival (5yr-OS) was 42% (95% CI, 39, 44). Transcriptome sequencing (n=238), gene expression profiling (n=210), cytogenetics (n=197) and fusion PCR (n=274) enabled genomic subtyping of 282 patient samples, of which 264 were eligible for trial, accounting for 64.5% of E2993 patients. Among patients in the outcome analysis, 29.5% of cases had favorable outcomes with 5yr-OS of 65-80% and were deemed standard-risk (DUX4-rearranged [9.2%], ETV6-RUNX1/-like [2.3%], TCF3-PBX1 [6.9%], PAX5 P80R [4.1%], high-hyperdiploid [6.9%]); 50.2% had high-risk genotypes with 5yr-OS of 0-27% (Ph-like [21.2%], KMT2A-AFF1 [12%], low-hypodiploid/near-haploid [14.3%], BCL2/MYC-rearranged [2.8%]); and 20.3% had intermediate-risk genotypes with 5yr-OS of 33-45% (PAX5alt [12.4%], ZNF384/-like [5.1%], MEF2D-rearranged [2.8%]). IKZF1 alterations occurred in 86% of Ph-like and TP53 mutations occurred in low-hypodiploid (54%) and BCL2/MYC-rearranged patients (33%), but were not independently associated with outcome. Of patients considered high-risk for relapse based on presenting age and WBC count, 40% harbored subtype-defining genetic alterations associated with standard- or intermediate-risk outcomes. We identified distinct immunophenotypic features for DUX4-rearranged, PAX5 P80R, ZNF384-R/-like and Ph-like genotypes. These data in a large adult B-ALL cohort treated with a non-risk-adapted approach on a single trial show the prognostic importance of genomic analyses which may translate into future therapeutic benefits

    WHO-defined ‘myelodysplastic syndrome with isolated del(5q)' in 88 consecutive patients: survival data, leukemic transformation rates and prevalence of JAK2, MPL and IDH mutations

    Get PDF
    The 2008 World Health Organization (WHO) criteria were used to identify 88 consecutive Mayo Clinic patients with ‘myelodysplastic syndrome with isolated del(5q)' (median age 74 years; 60 females). In all, 60 (68%) patients were followed up to the time of their death. Overall median survival was 66 months; leukemic transformation was documented in five (5.7%) cases. Multivariable analysis identified age ⩾70 years (P=0.01), transfusion need at diagnosis (P=0.04) and dysgranulopoiesis (P=0.02) as independent predictors of shortened survival; the presence of zero (low risk), one (intermediate risk) or ⩾2 (high risk) risk factors corresponded to median survivals of 102, 52 and 27 months, respectively. Janus kinase 2 (JAK2), thrombopoietin receptor (MPL), isocitrate dehydrogenase 1 (IDH1) and IDH2 mutational analysis was performed on archived bone marrows in 78 patients; JAK2V617F and MPLW515L mutations were shown in five (6.4%) and three (3.8%) patients, respectively, and did not seem to affect phenotype or prognosis. IDH mutations were not detected. Survival was not affected by serum ferritin and there were no instances of death directly related to iron overload. The current study is unique in its strict adherence to WHO criteria for selecting study patients and providing information on long-term survival, practical prognostic factors, baseline risk of leukemic transformation and the prevalence of JAK2, MPL and IDH mutations

    Therapeutic Potential of HDL in Cardioprotection and Tissue Repair

    Get PDF
    Epidemiological studies support a strong association between high-density lipoprotein (HDL) cholesterol levels and heart failure incidence. Experimental evidence from different angles supports the view that low HDL is unlikely an innocent bystander in the development of heart failure. HDL exerts direct cardioprotective effects, which are mediated via its interactions with the myocardium and more specifically with cardiomyocytes. HDL may improve cardiac function in several ways. Firstly, HDL may protect the heart against ischaemia/reperfusion injury resulting in a reduction of infarct size and thus in myocardial salvage. Secondly, HDL can improve cardiac function in the absence of ischaemic heart disease as illustrated by beneficial effects conferred by these lipoproteins in diabetic cardiomyopathy. Thirdly, HDL may improve cardiac function by reducing infarct expansion and by attenuating ventricular remodelling post-myocardial infarction. These different mechanisms are substantiated by in vitro, ex vivo, and in vivo intervention studies that applied treatment with native HDL, treatment with reconstituted HDL, or human apo A-I gene transfer. The effect of human apo A-I gene transfer on infarct expansion and ventricular remodelling post-myocardial infarction illustrates the beneficial effects of HDL on tissue repair. The role of HDL in tissue repair is further underpinned by the potent effects of these lipoproteins on endothelial progenitor cell number, function, and incorporation, which may in particular be relevant under conditions of high endothelial cell turnover. Furthermore, topical HDL therapy enhances cutaneous wound healing in different models. In conclusion, the development of HDL-targeted interventions in these strategically chosen therapeutic areas is supported by a strong clinical rationale and significant preclinical data.status: publishe

    Cytogenetic and FISH analysis in five patients with hypoplastic bone marrow

    No full text
    corecore