87 research outputs found

    Inflammatory Biomarkers in Childhood Arterial Ischemic Stroke: Correlates of Stroke Cause and Recurrence.

    Get PDF
    Background and purposeAmong children with arterial ischemic stroke (AIS), those with arteriopathy have the highest recurrence risk. We hypothesized that arteriopathy progression is an inflammatory process and that inflammatory biomarkers would predict recurrent AIS.MethodsIn an international study of childhood AIS, we selected cases classified into 1 of the 3 most common childhood AIS causes: definite arteriopathic (n=103), cardioembolic (n=55), or idiopathic (n=78). We measured serum concentrations of high-sensitivity C-reactive protein, serum amyloid A, myeloperoxidase, and tumor necrosis factor-α. We used linear regression to compare analyte concentrations across the subtypes and Cox proportional hazards models to determine predictors of recurrent AIS.ResultsMedian age at index stroke was 8.2 years (interquartile range, 3.6-14.3); serum samples were collected at median 5.5 days post stroke (interquartile range, 3-10 days). In adjusted models (including age, infarct volume, and time to sample collection) with idiopathic as the reference, the cardioembolic (but not arteriopathic) group had higher concentrations of high-sensitivity C-reactive protein and myeloperoxidase, whereas both cardioembolic and arteriopathic groups had higher serum amyloid A. In the arteriopathic (but not cardioembolic) group, higher high-sensitivity C-reactive protein and serum amyloid A predicted recurrent AIS. Children with progressive arteriopathies on follow-up imaging had higher recurrence rates, and a trend toward higher high-sensitivity C-reactive protein and serum amyloid A, compared with children with stable or improved arteriopathies.ConclusionsAmong children with AIS, specific inflammatory biomarkers correlate with cause and-in the arteriopathy group-risk of stroke recurrence. Interventions targeting inflammation should be considered for pediatric secondary stroke prevention trials

    Towards a consensus-based classification of childhood arterial ischemic stroke.

    Get PDF
    Background and purposeThe implementation of uniform nomenclature and classification in adult arterial ischemic stroke (AIS) has been critical for defining outcomes and recurrence risks according to etiology and in developing risk-stratified treatments. In contrast, current classification and nomenclature in childhood AIS are often overlapping or contradictory. Our purpose was to develop a comprehensive consensus-based classification system for childhood AIS.MethodsUsing a modified-Delphi method, members of the International Pediatric Stroke Study (IPSS) developed the Childhood AIS Standardized Classification And Diagnostic Evaluation (CASCADE) criteria. Two groups of pediatric stroke specialists from the IPSS classified 7 test cases using 2 methods each: (1) classification typical of the individual clinician's current clinical practice; and (2) classification based on the CASCADE criteria. Group 1 underwent in-person training in the utilization of the CASCADE criteria. Group 2 classified the same cases via an online survey, including definitions but without training. Inter-rater reliability (IRR) was assessed via multi-rater unweighted κ-statistic.ResultsIn Group 1 (with training), IRR was improved using CASCADE criteria (κ=0.78, 95% CI=[0.49, 0.94]), compared with typical clinical practice (κ=0.40, 95% CI=[0.11, 0.60]). In Group 2 (without training), IRR was lower than among trained raters (κ=0.61, 95% CI=[0.29, 0.77]), but higher than current practice (κ=0.23, 95% CI=[0.03, 0.36]).ConclusionsA new, consensus-based classification system for childhood AIS, the CASCADE criteria, can be used to classify cases with good IRR. These preliminary findings suggest that the CASCADE criteria may be particularity useful in the setting of prospective multicenter studies in childhood-onset AIS, where standardized training of investigators is feasible

    Inter-Rater Reliability of the CASCADE Criteria: Challenges in Classifying Arteriopathies.

    Get PDF
    Background and purposeThere are limited data about the reliability of subtype classification in childhood arterial ischemic stroke, an issue that prompted the IPSS (International Pediatric Stroke Study) to develop the CASCADE criteria (Childhood AIS Standardized Classification and Diagnostic Evaluation). Our purpose was to determine the CASCADE criteria's reliability in a population of children with stroke.MethodsEight raters from the IPSS reviewed neuroimaging and clinical records of 64 cases (16 cases each) randomly selected from a prospectively collected cohort of 113 children with arterial ischemic stroke and classified them using the CASCADE criteria. Clinical data abstracted included history of present illness, risk factors, and acute imaging. Agreement among raters was measured by unweighted κ statistic.ResultsThe CASCADE criteria demonstrated a moderate inter-rater reliability, with an overall κ statistic of 0.53 (95% confidence interval [CI]=0.39-0.67). Cardioembolic and bilateral cerebral arteriopathy subtypes had much higher agreement (κ=0.84; 95% CI=0.70-0.99; and κ=0.90; 95% CI=0.71-1.00, respectively) than cases of aortic/cervical arteriopathy (κ=0.36; 95% CI=0.01-0.71), unilateral focal cerebral arteriopathy of childhood (FCA; κ=0.49; 95% CI=0.23-0.76), and small vessel arteriopathy of childhood (κ=-0.012; 95% CI=-0.04 to 0.01).ConclusionsThe CASCADE criteria have moderate reliability when used by trained and experienced raters, which suggests that it can be used for classification in multicenter pediatric stroke studies. However, the moderate reliability of the arteriopathic subtypes suggests that further refinement is needed for defining subtypes. Such revisions may reduce the variability in the literature describing risk factors, recurrence, and outcomes associated with childhood arteriopathy

    Arteriopathy diagnosis in childhood arterial ischemic stroke: results of the vascular effects of infection in pediatric stroke study.

    Get PDF
    Background and purposeAlthough arteriopathies are the most common cause of childhood arterial ischemic stroke, and the strongest predictor of recurrent stroke, they are difficult to diagnose. We studied the role of clinical data and follow-up imaging in diagnosing cerebral and cervical arteriopathy in children with arterial ischemic stroke.MethodsVascular effects of infection in pediatric stroke, an international prospective study, enrolled 355 cases of arterial ischemic stroke (age, 29 days to 18 years) at 39 centers. A neuroradiologist and stroke neurologist independently reviewed vascular imaging of the brain (mandatory for inclusion) and neck to establish a diagnosis of arteriopathy (definite, possible, or absent) in 3 steps: (1) baseline imaging alone; (2) plus clinical data; (3) plus follow-up imaging. A 4-person committee, including a second neuroradiologist and stroke neurologist, adjudicated disagreements. Using the final diagnosis as the gold standard, we calculated the sensitivity and specificity of each step.ResultsCases were aged median 7.6 years (interquartile range, 2.8-14 years); 56% boys. The majority (52%) was previously healthy; 41% had follow-up vascular imaging. Only 56 (16%) required adjudication. The gold standard diagnosis was definite arteriopathy in 127 (36%), possible in 34 (9.6%), and absent in 194 (55%). Sensitivity was 79% at step 1, 90% at step 2, and 94% at step 3; specificity was high throughout (99%, 100%, and 100%), as was agreement between reviewers (κ=0.77, 0.81, and 0.78).ConclusionsClinical data and follow-up imaging help, yet uncertainty in the diagnosis of childhood arteriopathy remains. This presents a challenge to better understanding the mechanisms underlying these arteriopathies and designing strategies for prevention of childhood arterial ischemic stroke

    Arterial Tortuosity: An Imaging Biomarker of Childhood Stroke Pathogenesis?

    Get PDF
    Background and purposeArteriopathy is the leading cause of childhood arterial ischemic stroke. Mechanisms are poorly understood but may include inherent abnormalities of arterial structure. Extracranial dissection is associated with connective tissue disorders in adult stroke. Focal cerebral arteriopathy is a common syndrome where pathophysiology is unknown but may include intracranial dissection or transient cerebral arteriopathy. We aimed to quantify cerebral arterial tortuosity in childhood arterial ischemic stroke, hypothesizing increased tortuosity in dissection.MethodsChildren (1 month to 18 years) with arterial ischemic stroke were recruited within the Vascular Effects of Infection in Pediatric Stroke (VIPS) study with controls from the Calgary Pediatric Stroke Program. Objective, multi-investigator review defined diagnostic categories. A validated imaging software method calculated the mean arterial tortuosity of the major cerebral arteries using 3-dimensional time-of-flight magnetic resonance angiographic source images. Tortuosity of unaffected vessels was compared between children with dissection, transient cerebral arteriopathy, meningitis, moyamoya, cardioembolic strokes, and controls (ANOVA and post hoc Tukey). Trauma-related versus spontaneous dissection was compared (Student t test).ResultsOne hundred fifteen children were studied (median, 6.8 years; 43% women). Age and sex were similar across groups. Tortuosity means and variances were consistent with validation studies. Tortuosity in controls (1.346±0.074; n=15) was comparable with moyamoya (1.324±0.038; n=15; P=0.998), meningitis (1.348±0.052; n=11; P=0.989), and cardioembolic (1.379±0.056; n=27; P=0.190) cases. Tortuosity was higher in both extracranial dissection (1.404±0.084; n=22; P=0.021) and transient cerebral arteriopathy (1.390±0.040; n=27; P=0.001) children. Tortuosity was not different between traumatic versus spontaneous dissections (P=0.70).ConclusionsIn children with dissection and transient cerebral arteriopathy, cerebral arteries demonstrate increased tortuosity. Quantified arterial tortuosity may represent a clinically relevant imaging biomarker of vascular biology in pediatric stroke

    Risk of Recurrent Arterial Ischemic Stroke in Childhood: A Prospective International Study.

    Get PDF
    Background and purposePublished cohorts of children with arterial ischemic stroke (AIS) in the 1990s to early 2000s reported 5-year cumulative recurrence rates approaching 20%. Since then, utilization of antithrombotic agents for secondary stroke prevention in children has increased. We sought to determine rates and predictors of recurrent stroke in the current era.MethodsThe Vascular Effects of Infection in Pediatric Stroke (VIPS) study enrolled 355 children with AIS at 37 international centers from 2009 to 2014 and followed them prospectively for recurrent stroke. Index and recurrent strokes underwent central review and confirmation, as well as central classification of causes of stroke, including arteriopathies. Other predictors were measured via parental interview or chart review.ResultsOf the 355 children, 354 survived their acute index stroke, and 308 (87%) were treated with an antithrombotic medication. During a median follow-up of 2.0 years (interquartile range, 1.0-3.0), 40 children had a recurrent AIS, and none had a hemorrhagic stroke. The cumulative stroke recurrence rate was 6.8% (95% confidence interval, 4.6%-10%) at 1 month and 12% (8.5%-15%) at 1 year. The sole predictor of recurrence was the presence of an arteriopathy, which increased the risk of recurrence 5-fold when compared with an idiopathic AIS (hazard ratio, 5.0; 95% confidence interval, 1.8-14). The 1-year recurrence rate was 32% (95% confidence interval, 18%-51%) for moyamoya, 25% (12%-48%) for transient cerebral arteriopathy, and 19% (8.5%-40%) for arterial dissection.ConclusionsChildren with AIS, particularly those with arteriopathy, remain at high risk for recurrent AIS despite increased utilization of antithrombotic agents. Therapies directed at the arteriopathies themselves are needed

    De Novo and Rare Inherited Copy-Number Variations in the Hemiplegic Form of Cerebral Palsy

    Get PDF
    PurposeHemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP.MethodsWe genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs
    • …
    corecore