25 research outputs found

    Osmoregulated trehalose-derived oligosaccharides in Sinorhizobium meliloti

    Get PDF
    AbstractSinorhizobium meliloti is a soil bacterium accumulating glutamate, N-acetylglutaminyl glutamine amide and trehalose in hyperosmolarity. Besides these compatible solutes, we highlighted several compounds in S. meliloti Rm1021 wild-type strain. The purification and the structural characterization based on liquid chromatography evaporative light scattering detector, electrospray ionization high resolution mass spectrometry and nuclear magnetic resonance techniques showed they were four linear oligosaccharides composed of 3, 4, 5 and 6 glucose units all linked by α-(1→2) linkages except a terminal α-(1↔1) linkage. These oligosaccharides were cytoplasmic and were observed in several wild-type strains suggesting they were common features in S. meliloti strains grown in hyperosmolarity

    Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy.

    No full text
    Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes

    Genetic dissection of floridean starch synthesis in the cytosol of the model dinoflagellate Crypthecodinium cohnii

    No full text
    Starch defines an insoluble semicrystalline form of storage polysaccharides restricted to Archaeplastida (red and green algae, land plants, and glaucophytes) and some secondary endosymbiosis derivatives of the latter. While green algae and land-plants store starch in plastids by using an ADP-glucose-based pathway related to that of cyanobacteria, red algae, glaucophytes, cryptophytes, dinoflagellates, and apicomplexa parasites store a similar type of polysaccharide named floridean starch in their cytosol or periplast. These organisms are suspected to store their floridean starch from UDP-glucose in a fashion similar to heterotrophic eukaryotes. However, experimental proof of this suspicion has never been produced. Dinoflagellates define an important group of both photoautotrophic and heterotrophic protists. We now report the selection and characterization of a low starch mutant of the heterotrophic dinoflagellate Crypthecodinium cohnii. We show that the sta1-1 mutation of C. cohnii leads to a modification of the UDP-glucose-specific soluble starch synthase activity that correlates with a decrease in starch content and an alteration of amylopectin structure. These experimental results validate the UDP-glucose-based pathway proposed for floridean starch synthesis

    Proteome Analysis of Potato Starch Reveals the Presence of New Starch Metabolic Proteins as Well as Multiple Protease Inhibitors

    No full text
    International audienceStarch bound proteins mainly include enzymes from the starch biosynthesis pathway. Recently, new functions in starch molecular assembly or active protein targeting were also proposed for starch associated proteins. The potato genome sequence reveals 77 loci encoding starch metabolizing enzymes with the identification of previously unknown putative isoforms. Here we show by bottom-up proteomics that most of the starch biosynthetic enzymes in potato remain associated with starch even after washing with SDS or protease treatment of the granule surface. Moreover, our study confirmed the presence of PTST1 (Protein Targeting to Starch), ESV1 (Early StarVation1) and LESV (Like ESV), that have recently been identified in Arabidopsis. In addition, we report on the presence of a new isoform of starch synthase, SS6, containing both K-X-G-G-L catalytic motifs. Furthermore, multiple protease inhibitors were also identified that are cleared away from starch by SDS and thermolysin treatments. Our results indicate that SS6 may play a yet uncharacterized function in starch biosynthesis and open new perspectives both in understanding storage starch metabolism as well as breeding improved potato lines

    Proteome Analysis of Potato Starch Reveals the Presence of New Starch Metabolic Proteins as Well as Multiple Protease Inhibitors

    No full text
    Starch bound proteins mainly include enzymes from the starch biosynthesis pathway. Recently, new functions in starch molecular assembly or active protein targeting were also proposed for starch associated proteins. The potato genome sequence reveals 77 loci encoding starch metabolizing enzymes with the identification of previously unknown putative isoforms. Here we show by bottom-up proteomics that most of the starch biosynthetic enzymes in potato remain associated with starch even after washing with SDS or protease treatment of the granule surface. Moreover, our study confirmed the presence of PTST1 (Protein Targeting to Starch), ESV1 (Early StarVation1) and LESV (Like ESV), that have recently been identified in Arabidopsis. In addition, we report on the presence of a new isoform of starch synthase, SS6, containing both K-X-G-G-L catalytic motifs. Furthermore, multiple protease inhibitors were also identified that are cleared away from starch by SDS and thermolysin treatments. Our results indicate that SS6 may play a yet uncharacterized function in starch biosynthesis and open new perspectives both in understanding storage starch metabolism as well as breeding improved potato lines

    Study of the preparation of bulk powder tungsten carbides by temperature programmed reaction with CH 4 + H 2 mixtures

    No full text
    The synthesis of bulk tungsten carbides by carburization of W metal or of WO 3 with mixtures of CH 4 in hydrogen at various pressures has been studied in temperature programmed experiments. The resulting solids have been characterized by elemental analysis, X-ray diffraction, XPS analysis, and specific surface area measurements. The carburization occurs in two distinct steps: W 2C is formed in the first step taking place at about 650°C at atmospheric pressure with a 20% CH 4-H 2 mixture, while the formation of WC occurs only at higher temperatures. During carburization some free carbon is deposited, the importance of which is very much dependent on CH 4 partial pressure and on the temperature of carburization. It has also been shown that direct carburization of WO 3 by CH 4-H 2 does not take place, but that the carburization occurs via the reduction of WO 3 to W metal. The rate of reduction of WO 3 and that of carburization of W metal are very much dependent on, respectively, hydrogen partial pressure and CH 4 partial pressure. The extent of reduction of WO 3 into W metal required for carburization which takes place also depends on CH 4 partial pressure, indicating a competition between carburization of W metal at the surface and diffusion of W metal into the bulk of the Solid. © 1996 Academic Press, Inc.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Chiral separation of new sulfonamide derivatives and evaluation of their enantioselective affinity for human carbonic anhydrase II by microscale thermophoresis and surface plasmon resonance

    No full text
    International audienceThe aim of this study was to develop a method combining chiral separation and biophysical techniques to evaluate the enantioselective affinity of original sulfonamide derivatives towards their therapeutic target, the human carbonic anhydrase II (hACII). The first step consisted in the preparation of the enantiomers by chromatographic separation. The performances of HPLC and Supercritical Fluid Chromatography (SFC) were studied at the analytical scale by optimization of various experimental conditions using adsorbed polysaccharide chiral stationary phases (amylose AD-H and cellulose OD-H). Since SFC allowed obtaining higher enantioresolutions per time unit, it was selected for the semi-preparative scale and successfully used to isolate each enantiomer with a satisfactory enantiomeric purity (>98%). Secondly, microscale thermophoresis (MST) method and surface plasmon resonance (SPR) used as reference method were developed to measure potential enantioselective affinities of these enantiomers towards the hACII. The optimizations of both methods were performed using a reference compound, i.e. acetazolamide, which affinity for hCAII has previously been demonstrated. For all compounds, KD values obtained using MST and SPR were in good agreement, leading to similar affinity scales despite both approaches totally differ (labeling for MST versus immobilization of the protein for SPR). The equilibrium dissociation constants of our original compounds for the hCAII were in the range 100–1000 nM and an enantioselectivity was observed using the MST and SPR methods for the diarylpyrazole 2. Finally, by comparing the MST and SPR techniques, MST appears especially adapted for further screening of a series of sulfonamide derivatives due to the lower time required to estimate a binding constant while consuming as little hCAII as SPR
    corecore