312 research outputs found
Congestion-aware wireless network-on-chip for high-speed communication
The design of system-on-chip (SoC) requires the complex integration between a multi-number of cores on a single chip. To establish the effective communication between multiple cores there aremore challenging issues on designing the network-on-chip (NoC) architectures. The proposed system deals with the utilization of on-chip antennas for the wireless communication between the long distance cores to minimize the latency and power. In this proposed work, we have designed high-speed wireless NoC (WiNoC) for on-chip communication. This high-speed WiNoC has been achieved by designing a congestion measure unit, which monitors and measures the congestion in the input data and establishes the effective wireless communication between the output channels and routers. The designed architecture is synthesized and implemented by using Altera Quartus II, where the SoC is designed using Qsys builder. The proposed WiNoC shows better performance parameters like throughput, latency and power than the conventional NoC
Atomistic Simulation of Water Percolation and Proton Hopping in Nafion Fuel Cell Membrane
We have performed a detailed analysis of water clustering and percolation in hydrated Nafion configurations generated by classical molecular dynamics simulations. Our results show that at low hydration levels H2O molecules are isolated and a continuous hydrogen-bonded network forms as the hydration level is increased. Our quantitative analysis has established a hydration level (λ) between 5 and 6 H2O/SO3â as the percolation threshold of Nafion. We have also examined the effect of such a network on proton transport by studying the structural diffusion of protons using the quantum hopping molecular dynamics method. The mean residence time of the proton on a water molecule decreases by 2 orders of magnitude when the λ value is increased from 5 to 15. The proton diffusion coefficient in Nafion at a λ value of 15 is about 1.1 Ă 10â5 cm2/s in agreement with experiment. The results provide quantitative atomic-level evidence of water network percolation in Nafion and its effect on proton conductivity
Exact norm-conserving stochastic time-dependent Hartree-Fock
We derive an exact single-body decomposition of the time-dependent
Schroedinger equation for N pairwise-interacting fermions. Each fermion obeys a
stochastic time-dependent norm-preserving wave equation. As a first test of the
method we calculate the low energy spectrum of Helium. An extension of the
method to bosons is outlined.Comment: 21 pages, 3 figures, LaTeX fil
Kinetics of photoinduced ordering in azo-dye films: two-state and diffusion models
We study the kinetics of photoinduced ordering in the azo-dye SD1
photoaligning layers and present the results of modeling performed using two
different phenomenological approaches. A phenomenological two state model is
deduced from the master equation for an ensemble of two-level molecular
systems. Using an alternative approach, we formulate the two-dimensional (2D)
diffusion model as the free energy Fokker-Planck equation simplified for the
limiting regime of purely in-plane reorientation. The models are employed to
interpret the irradiation time dependence of the absorption order parameters
extracted from the available experimental data by using the exact solution to
the light transmission problem for a biaxially anisotropic absorbing layer. The
transient photoinduced structures are found to be biaxially anisotropic whereas
the photosteady and the initial states are uniaxial.Comment: revtex4, 34 pages, 9 figure
MHz Unidirectional Rotation of Molecular Rotary Motors
A combination of cryogenic UV-vis and CD spectroscopy and transient absorption spectroscopy at ambient temperature is used to study a new class of unidirectional rotary molecular motors. Stabilization of unstable intermediates is achieved below 95 K in propane solution for the structure with the fastest rotation rate, and below this temperature measurements on the rate limiting step in the rotation cycle can be performed to obtain activation parameters. The results are compared to measurements at ambient temperature using transient absorption spectroscopy, which show that behavior of these motors is similar over the full temperature range investigated, thereby allowing a maximum rotation rate of 3 MHz at room temperature under suitable irradiation conditions
Statistical approach for unpolarized fragmentation functions for the octet baryons
A statistical model for the parton distributions in the nucleon has proven
its efficiency in the analysis of deep inelastic scattering data, so we propose
to extend this approach to the description of unpolarized fragmentation
functions for the octet baryons. The characteristics of the model are
determined by using some data on the inclusive production of proton and
in unpolarized deep inelastic scattering and a next-to-leading
analysis of the available experimental data on the production of unpolarized
octet baryons in annihilation. Our results show that both parton
distributions and fragmentation functions are compatible with the statistical
approach, in terms of a few free parameters, whose interpretation will be
discussed.Comment: 14 pages, 7 eps figures, to appear in Phys. Rev.
Block Entanglement Entropy of Ground States with Long-Range Magnetic Order
In this paper we calculate the block entanglement entropies of spin models
whose ground states have perfect antiferromagnetic or ferromagnetic long-range
order. In the latter case the definition of entanglement entropy is extended to
properly take into account the ground state degeneracy. We find in both cases
the entropy grows logarithmically with the block size. Implication of our
results on states with general long-range order will be discussed.Comment: 9 pages, 5 figure
Induced pseudoscalar coupling of the proton weak interaction
The induced pseudoscalar coupling is the least well known of the weak
coupling constants of the proton's charged--current interaction. Its size is
dictated by chiral symmetry arguments, and its measurement represents an
important test of quantum chromodynamics at low energies. During the past
decade a large body of new data relevant to the coupling has been
accumulated. This data includes measurements of radiative and non radiative
muon capture on targets ranging from hydrogen and few--nucleon systems to
complex nuclei. Herein the authors review the theoretical underpinnings of
, the experimental studies of , and the procedures and uncertainties
in extracting the coupling from data. Current puzzles are highlighted and
future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic
Recommended from our members
Initial biological evaluations of 18F-KS1, a novel ascorbate derivative to image oxidative stress in cancer
Background
Reactive oxygen species (ROS)-induced oxidative stress damages many cellular components such as fatty acids, DNA, and proteins. This damage is implicated in many disease pathologies including cancer and neurodegenerative and cardiovascular diseases. Antioxidants like ascorbate (vitamin C, ascorbic acid) have been shown to protect against the deleterious effects of oxidative stress in patients with cancer. In contrast, other data indicate potential tumor-promoting activity of antioxidants, demonstrating a potential temporal benefit of ROS. However, quantifying real-time tumor ROS is currently not feasible, since there is no way to directly probe global tumor ROS. In order to study this ROS-induced damage and design novel therapeutics to prevent its sequelae, the quantitative nature of positron emission tomography (PET) can be harnessed to measure in vivo concentrations of ROS. Therefore, our goal is to develop a novel translational ascorbate-based probe to image ROS in cancer in vivo using noninvasive PET imaging of tumor tissue. The real-time evaluations of ROS state can prove critical in developing new therapies and stratifying patients to therapies that are affected by tumor ROS.
Methods
We designed, synthesized, and characterized a novel ascorbate derivative (E)-5-(2-chloroethylidene)-3-((4-(2-fluoroethoxy)benzyl)oxy)-4-hydroxyfuran-2(5H)-one (KS1). We used KS1 in an in vitro ROS MitoSOX-based assay in two different head and neck squamous cancer cells (HNSCC) that express different ROS levels, with ascorbate as reference standard. We radiolabeled 18F-KS1 following 18F-based nucleophilic substitution reactions and determined in vitro reactivity and specificity of 18F-KS1 in HNSCC and prostate cancer (PCa) cells. MicroPET imaging and standard biodistribution studies of 18F-KS1 were performed in mice bearing PCa cells. To further demonstrate specificity, we performed microPET blocking experiments using nonradioactive KS1 as a blocker.
Results
KS1 was synthesized and characterized using 1H NMR spectra. MitoSOX assay demonstrated good correlations between increasing concentrations of KS1 and ascorbate and increased reactivity in SCC-61 cells (with high ROS levels) versus rSCC-61cells (with low ROS levels). 18F-KS1 was radiolabeled with high radiochemical purity (>â94%) and specific activity (~â100âGBq/ÎŒmol) at end of synthesis (EOS). Cell uptake of 18F-KS1 was high in both types of cancer cells, and the uptake was significantly blocked by nonradioactive KS1, and the ROS blocker, superoxide dismutase (SOD) demonstrating specificity. Furthermore, 18F-KS1 uptake was increased in PCa cells under hypoxic conditions, which have been shown to generate high ROS. Initial in vivo tumor uptake studies in PCa tumor-bearing mice demonstrated that 18F-KS1 specifically bound to tumor, which was significantly blocked (threefold) by pre-injecting unlabeled KS1. Furthermore, biodistribution studies in the same tumor-bearing mice showed high tumor to muscle (target to nontarget) ratios.
Conclusion
This work demonstrates the strong preliminary support of 18F-KS1, both in vitro and in vivo for imaging ROS in cancer. If successful, this work will provide a new paradigm to directly probe real-time oxidative stress levels in vivo. Our work could enhance precision medicine approaches to treat cancer, as well as neurodegenerative and cardiovascular diseases affected by ROS
Quantitative Modeling of GRK-Mediated ÎČ2AR Regulation
We developed a unified model of the GRK-mediated ÎČ2 adrenergic receptor (ÎČ2AR) regulation that simultaneously accounts for six different biochemical measurements of the system obtained over a wide range of agonist concentrations. Using a single deterministic model we accounted for (1) GRK phosphorylation in response to various full and partial agonists; (2) dephosphorylation of the GRK site on the ÎČ2AR; (3) ÎČ2AR internalization; (4) recycling of the ÎČ2AR post isoproterenol treatment; (5) ÎČ2AR desensitization; and (6) ÎČ2AR resensitization. Simulations of our model show that plasma membrane dephosphorylation and recycling of the phosphorylated receptor are necessary to adequately account for the measured dephosphorylation kinetics. We further used the model to predict the consequences of (1) modifying rates such as GRK phosphorylation of the receptor, arrestin binding and dissociation from the receptor, and receptor dephosphorylation that should reflect effects of knockdowns and overexpressions of these components; and (2) varying concentration and frequency of agonist stimulation âseenâ by the ÎČ2AR to better mimic hormonal, neurophysiological and pharmacological stimulations of the ÎČ2AR. Exploring the consequences of rapid pulsatile agonist stimulation, we found that although resensitization was rapid, the ÎČ2AR system retained the memory of the previous stimuli and desensitized faster and much more strongly in response to subsequent stimuli. The latent memory that we predict is due to slower membrane dephosphorylation, which allows for progressive accumulation of phosphorylated receptor on the surface. This primes the receptor for faster arrestin binding on subsequent agonist activation leading to a greater extent of desensitization. In summary, the model is unique in accounting for the behavior of the ÎČ2AR system across multiple types of biochemical measurements using a single set of experimentally constrained parameters. It also provides insight into how the signaling machinery can retain memory of prior stimulation long after near complete resensitization has been achieved
- âŠ