216 research outputs found
A Variational Procedure for Time-Dependent Processes
A simple variational Lagrangian is proposed for the time development of an
arbitrary density matrix, employing the "factorization" of the density. Only
the "kinetic energy" appears in the Lagrangian. The formalism applies to pure
and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport
theory, etc. It recaptures the Least Dissipation Function condition of
Rayleigh-Onsager {\bf and in practical applications is flexible}. The
variational proposal is tested on a two level system interacting that is
subject, in one instance, to an interaction with a single oscillator and, in
another, that evolves in a dissipative mode.Comment: 25 pages, 4 figure
Evaluation of Spinal Toxicity and Long-term Spinal Reflex Function after Intrathecal Levobupivaciane in the Neonatal Rat
Neuraxial anesthesia is utilized in children of all ages. Local anesthetics produce dose-dependent toxicity in certain adult models, but the developing spinal cord may also be susceptible to drug-induced apoptosis. In postnatal rodents, we examined the effects of intrathecal levobupivacaine on neuropathology and long-term sensorimotor outcomes
On the stability of standing waves of Klein-Gordon equations in a semiclassical regime
We investigate the orbital stability and instability of standing waves for
two classes of Klein-Gordon equations in the semi-classical regime.Comment: 9 page
Effects of Combinatorial Treatment with Pituitary Adenylate Cyclase Activating Peptide and Human Mesenchymal Stem Cells on Spinal Cord Tissue Repair
The aim of this study is to understand if human mesenchymal stem cells (hMSCs) and neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) have synergistic protective effect that promotes functional recovery in rats with severe spinal cord injury (SCI). To evaluate the effect of delayed combinatorial therapy of PACAP and hMSCs on spinal cord tissue repair, we used the immortalized hMSCs that retain their potential of neuronal differentiation under the stimulation of neurogenic factors and possess the properties for the production of several growth factors beneficial for neural cell survival. The results indicated that delayed treatment with PACAP and hMSCs at day 7 post SCI increased the remaining neuronal fibers in the injured spinal cord, leading to better locomotor functional recovery in SCI rats when compared to treatment only with PACAP or hMSCs. Western blotting also showed that the levels of antioxidant enzymes, Mn-superoxide dismutase (MnSOD) and peroxiredoxin-1/6 (Prx-1 and Prx-6), were increased at the lesion center 1 week after the delayed treatment with the combinatorial therapy when compared to that observed in the vehicle-treated control. Furthermore, in vitro studies showed that co-culture with hMSCs in the presence of PACAP not only increased a subpopulation of microglia expressing galectin-3, but also enhanced the ability of astrocytes to uptake extracellular glutamate. In summary, our in vivo and in vitro studies reveal that delayed transplantation of hMSCs combined with PACAP provides trophic molecules to promote neuronal cell survival, which also foster beneficial microenvironment for endogenous glia to increase their neuroprotective effect on the repair of injured spinal cord tissue
C3 Peptide Promotes Axonal Regeneration and Functional Motor Recovery after Peripheral Nerve Injury
Peripheral nerve injuries are frequently seen in trauma patients and due to delayed nerve repair, lifelong disabilities often follow this type of injury. Innovative therapies are needed to facilitate and expedite peripheral nerve regeneration. The purpose of this study was to determine the effects of a 1-time topical application of a 26-amino-acid fragment (C3156-181), derived from the Clostridium botulinum C3-exoenzyme, on peripheral nerve regeneration in 2 models of nerve injury and repair in adult rats. After sciatic nerve crush, different dosages of C3156-181 dissolved in buffer or reference solutions (nerve growth factor or C3bot-wild-type protein) or vehicle-only were injected through an epineurial opening into the lesion sites. After 10-mm nerve autotransplantation, either 8.0 nmol/kg C3156-181 or vehicle were injected into the proximal and distal suture sites. For a period of 3 to 10 postoperative weeks, C3156-181-treated animals showed a faster motor recovery than control animals. After crush injury, axonal outgrowth and elongation were activated and consequently resulted in faster motor recovery. The nerve autotransplantation model further elucidated that C3156-181 treatment accounts for better axonal elongation into motor targets and reduced axonal sprouting, which are followed by enhanced axonal maturation and better axonal functionality. The effects of C3156-181 are likely caused by a nonenzymatic down-regulation of active RhoA. Our results indicate the potential of C3156-181 as a therapeutic agent for the topical treatment of peripheral nerve repair sites
Treatment of Rat Spinal Cord Injury with the Neurotrophic Factor Albumin-Oleic Acid: Translational Application for Paralysis, Spasticity and Pain
Sensorimotor dysfunction following incomplete spinal cord injury (iSCI) is often characterized by the debilitating symptoms of paralysis, spasticity and pain, which require treatment with novel pleiotropic pharmacological agents. Previous in vitro studies suggest that Albumin (Alb) and Oleic Acid (OA) may play a role together as an endogenous neurotrophic factor. Although Alb can promote basic recovery of motor function after iSCI, the therapeutic effect of OA or Alb-OA on a known translational measure of SCI associated with symptoms of spasticity and change in nociception has not been studied. Following T9 spinal contusion injury in Wistar rats, intrathecal treatment with: i) Saline, ii) Alb (0.4 nanomoles), iii) OA (80 nanomoles), iv) Alb-Elaidic acid (0.4/80 nanomoles), or v) Alb-OA (0.4/80 nanomoles) were evaluated on basic motor function, temporal summation of noxious reflex activity, and with a new test of descending modulation of spinal activity below the SCI up to one month after injury. Albumin, OA and Alb-OA treatment inhibited nociceptive Tibialis Anterior (TA) reflex activity. Moreover Alb-OA synergistically promoted early recovery of locomotor activity to 50±10% of control and promoted de novo phasic descending inhibition of TA noxious reflex activity to 47±5% following non-invasive electrical conditioning stimulation applied above the iSCI. Spinal L4–L5 immunohistochemistry demonstrated a unique increase in serotonin fibre innervation up to 4.2±1.1 and 2.3±0.3 fold within the dorsal and ventral horn respectively with Alb-OA treatment when compared to uninjured tissue, in addition to a reduction in NR1 NMDA receptor phosphorylation and microglia reactivity. Early recovery of voluntary motor function accompanied with tonic and de novo phasic descending inhibition of nociceptive TA flexor reflex activity following Alb-OA treatment, mediated via known endogenous spinal mechanisms of action, suggests a clinical application of this novel neurotrophic factor for the treatment of paralysis, spasticity and pain
Derivations of the Born Rule
The Born rule, a cornerstone of quantum theory usually taken as a postulate, continues to attract numerous attempts for its derivation. A critical review of these derivations, from early attempts to very recent results, is presented. It is
argued that the Born rule cannot be derived from the other postulates of quantum theory without some additional assumptions
- …