171 research outputs found

    Effects of process conditions on foaming in stirred tanks

    Get PDF
    International audienceThe effect of impeller speed and type, as well as gas flow rate on the amount of foam generated in a 5L stirred tank has been studied. Foam height was found to increase with increasing impeller speed after a critical impeller speed was reached. It also increased with increasing gas flow rate. The disc turbine creates significantly more foam than the down-pumping hydrofoil for a given tip speed. Scale-up guidance to correctly replicate the amount of foaming in larger scale tank was also investigated. It was found that impeller tip speed was the best scale-up invariant, compared with power per unit volume and the Weber and Froude numbers. It is less clear, however, which is the best scale-up invariant for the gas flow rate; aeration number appears more adapted than the superficial gas velocity or the ratio of gas flow rate to liquid volume, however it does not always correctly replicate the gas-liquid flow regime

    How an improved sorghum variety evolves in a traditional seed system in Mali: Effects of farmers’ practices on the maintenance of phenotype and genetic composition

    Get PDF
    In Africa, it is mostly the informal seed system that ensures farmers’ seed supply. This is partly because the formal seed systems are not always effective in meeting demand for new seed varieties. Sometimes informal seed recycling and exchange of improved sorghum varieties will take place alongside formal initiatives, as is the case in southern Mali. Focusing on one particular village in the Dioïla district, we analyze the efficacy of farmers’ strategies for preserving varietal seed purity and genetic integrity of an improved inbred-line (Soumba variety). Six seed lots of Soumba, recycled for two to six years by farmers using different practices, were collected and assessed in on-station trials in order to compare their agronomic performance and phenotypic purity (off-type plant frequencies) with control versions of the variety. Additionally, 30 panicle samples were randomly collected from five farmer fields sown with recycled Soumba and assessed for phenotypic purity in a progeny nursery and investigated for molecular diversity using 12 SSR markers. A total of 150 panicles from five other non-Soumba varieties were collected in the village in order to investigate eventual gene flow and its potential genetic consequences for the Soumba variety. In fields sown with recycled Soumba seed, between 2% and 14% of plants showed phenotypic deviations from the typical Soumba variety. The progeny nursery and SSR marker analysis verified the presence of the off-type plants observed in the field. The STRUCTURE program revealed admixtures with other varieties in 23% of Soumba plants, confirming the presence of gene flow. Gene diversity values in Soumba samples ranged from 0.006 for the commercial sample to 0.257 for recycled samples. Introgression and contamination were best minimized when (1) farmers had received specific training in seed production, (2) they could take advantage of isolated fields and (3) they could practise true-to-type panicle selection. Farmerswere generally able to maintain the phenotype, as well as sustain or even improve yield performance of their Soumba variety while at the same time genetically enriching their seed stock

    Use of Activity-Based Probes to Develop High Throughput Screening Assays That Can Be Performed in Complex Cell Extracts

    Get PDF
    Background: High throughput screening (HTS) is one of the primary tools used to identify novel enzyme inhibitors. However, its applicability is generally restricted to targets that can either be expressed recombinantly or purified in large quantities. Methodology and Principal Findings: Here, we described a method to use activity-based probes (ABPs) to identify substrates that are sufficiently selective to allow HTS in complex biological samples. Because ABPs label their target enzymes through the formation of a permanent covalent bond, we can correlate labeling of target enzymes in a complex mixture with inhibition of turnover of a substrate in that same mixture. Thus, substrate specificity can be determined and substrates with sufficiently high selectivity for HTS can be identified. In this study, we demonstrate this method by using an ABP for dipeptidyl aminopeptidases to identify (Pro-Arg)2-Rhodamine as a specific substrate for DPAP1 in Plasmodium falciparum lysates and Cathepsin C in rat liver extracts. We then used this substrate to develop highly sensitive HTS assays (Z’.0.8) that are suitable for use in screening large collections of small molecules (i.e.300,000) for inhibitors of these proteases. Finally, we demonstrate that it is possible to use broad-spectrum ABPs to identify target-specific substrates. Conclusions: We believe that this approach will have value for many enzymatic systems where access to large amounts o

    Genetic structure and relationships within and between cultivated and wild sorghum ( Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers

    Get PDF
    Understanding the extent and partitioning of diversity within and among crop landraces and their wild/weedy relatives constitutes the first step in conserving and unlocking their genetic potential. This study aimed to characterize the genetic structure and relationships within and between cultivated and wild sorghum at country scale in Kenya, and to elucidate some of the underlying evolutionary mechanisms. We analyzed at total of 439 individuals comprising 329 cultivated and 110 wild sorghums using 24 microsatellite markers. We observed a total of 295 alleles across all loci and individuals, with 257 different alleles being detected in the cultivated sorghum gene pool and 238 alleles in the wild sorghum gene pool. We found that the wild sorghum gene pool harbored significantly more genetic diversity than its domesticated counterpart, a reflection that domestication of sorghum was accompanied by a genetic bottleneck. Overall, our study found close genetic proximity between cultivated sorghum and its wild progenitor, with the extent of crop-wild divergence varying among cultivation regions. The observed genetic proximity may have arisen primarily due to historical and/or contemporary gene flow between the two congeners, with differences in farmers' practices explaining inter-regional gene flow differences. This suggests that deployment of transgenic sorghum in Kenya may lead to escape of transgenes into wild-weedy sorghum relatives. In both cultivated and wild sorghum, genetic diversity was found to be structured more along geographical level than agro-climatic level. This indicated that gene flow and genetic drift contributed to shaping the contemporary genetic structure in the two congeners. Spatial autocorrelation analysis revealed a strong spatial genetic structure in both cultivated and wild sorghums at the country scale, which could be explained by medium- to long-distance seed movemen

    Application of a highly selective Cathepsin S two-step activity-based probe in multicolor bio-orthogonal correlative light-electron microscopy

    Get PDF
    Cathepsin S is a lysosomal cysteine protease highly expressed in immune cells such as dendritic cells, B cells and macrophages. Its functions include extracellular matrix breakdown and cleavage of cell adhesion molecules to facilitate immune cell motility, as well as cleavage of the invariant chain during maturation of major histocompatibility complex II. The identification of these diverse specific functions has brought the challenge of delineating cathepsin S activity with great spatial precision, relative to related enzymes and substrates. Here, the development of a potent and highly selective two-step activity-based probe for cathepsin S and the application in multicolor bio-orthogonal correlative light-electron microscopy is presented. LHVS, which has been reported as a selective inhibitor of cathepsin S with nanomolar potency, formed the basis for our probe design. However, in competitive activity-based protein profiling experiments LHVS showed significant cross-reactivity toward Cat L. Introduction of an azide group in the P2 position expanded the selectivity window for cathepsin S, but rendered the probe undetectable, as demonstrated in bio-orthogonal competitive activity-based protein profiling. Incorporation of an additional azide handle for click chemistry on the solvent-exposed P1 position allowed for selective labeling of cathepsin S. This highlights the influence of click handle positioning on probe efficacy. This probe was utilized in multicolor bio-orthogonal confocal and correlative light-electron microscopy to investigate the localization of cathepsin S activity at an ultrastructural level in bone marrow-derived dendritic cells. The tools developed in this study will aid the characterization of the variety of functions of cathepsin S throughout biology.Microscopic imaging and technolog

    Application of a highly selective cathepsin S two-step activity-based probe in multicolor bio-orthogonal correlative light-electron microscopy

    Get PDF
    Cathepsin S is a lysosomal cysteine protease highly expressed in immune cells such as dendritic cells, B cells and macrophages. Its functions include extracellular matrix breakdown and cleavage of cell adhesion molecules to facilitate immune cell motility, as well as cleavage of the invariant chain during maturation of major histocompatibility complex II. The identification of these diverse specific functions has brought the challenge of delineating cathepsin S activity with great spatial precision, relative to related enzymes and substrates. Here, the development of a potent and highly selective two-step activity-based probe for cathepsin S and the application in multicolor bio-orthogonal correlative light-electron microscopy is presented. LHVS, which has been reported as a selective inhibitor of cathepsin S with nanomolar potency, formed the basis for our probe design. However, in competitive activity-based protein profiling experiments LHVS showed significant cross-reactivity toward Cat L. Introduction of an azide group in the P2 position expanded the selectivity window for cathepsin S, but rendered the probe undetectable, as demonstrated in bio-orthogonal competitive activity-based protein profiling. Incorporation of an additional azide handle for click chemistry on the solvent-exposed P1 position allowed for selective labeling of cathepsin S. This highlights the influence of click handle positioning on probe efficacy. This probe was utilized in multicolor bio-orthogonal confocal and correlative light-electron microscopy to investigate the localization of cathepsin S activity at an ultrastructural level in bone marrow-derived dendritic cells. The tools developed in this study will aid the characterization of the variety of functions of cathepsin S throughout biology.Bio-organic Synthesi

    The regulatory subunit of PKA-I remains partially structured and undergoes β-aggregation upon thermal denaturation

    Get PDF
    Background: The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B. Methodology/Principal Findings: As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212-216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers. Conclusions/Significance: Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation. © 2011 Dao et al

    Local scale patterns of gene flow and genetic diversity in a crop–wild–weedy complex of sorghum (Sorghum bicolor (L.) Moench) under traditional agricultural field conditions in Kenya

    Get PDF
    Little information is available on the extent and patterns of gene flow and genetic diversity between cultivated sorghum and its wild related taxa under local agricultural conditions in Africa. As well as expanding knowledge on the evolutionary and domestication processes for sorghum, such information also has importance in biosafety, conservation and breeding programmes. Here, we examined the magnitude and dynamics of crop–wild gene flow and genetic variability in a crop–wild–weedy complex of sorghum under traditional farming in Meru South district, Kenya. We genotyped 110 cultivated sorghum, and 373 wild sorghum individuals using a panel of ten polymorphic microsatellite loci. We combined traditional measures of genetic diversity and differentiation with admixture analysis, population assignment, and analyses of spatial genetic structure to assess the extent and patterns of gene flow and diversity between cultivated and wild sorghum. Our results indicate that gene flow is asymmetric with higher rates from crop to wild forms than vice versa. Surprisingly, our data suggests that the two congeners have retained substantial genetic distinctness in the face of gene flow. Nevertheless, we found no significant differences in genetic diversity measures between them. Our study also did not find evidence of isolation by distance in cultivated or wild sorghum, which suggests that gene dispersal in the two conspecifics is not limited by geographic distance. Overall our study highlights likely escape and dispersal of transgenes within the sorghum crop–wild–weedy complex if genetically engineered varieties were to be introduced in Africa’s traditional farming system

    Massive Sorghum Collection Genotyped with SSR Markers to Enhance Use of Global Genetic Resources

    Get PDF
    Large ex situ collections require approaches for sampling manageable amounts of germplasm for in-depth characterization and use. We present here a large diversity survey in sorghum with 3367 accessions and 41 reference nuclear SSR markers. Of 19 alleles on average per locus, the largest numbers of alleles were concentrated in central and eastern Africa. Cultivated sorghum appeared structured according to geographic regions and race within region. A total of 13 groups of variable size were distinguished. The peripheral groups in western Africa, southern Africa and eastern Asia were the most homogeneous and clearly differentiated. Except for Kafir, there was little correspondence between races and marker-based groups. Bicolor, Caudatum, Durra and Guinea types were each dispersed in three groups or more. Races should therefore better be referred to as morphotypes. Wild and weedy accessions were very diverse and scattered among cultivated samples, reinforcing the idea that large gene-flow exists between the different compartments. Our study provides an entry to global sorghum germplasm collections. Our reference marker kit can serve to aggregate additional studies and enhance international collaboration. We propose a core reference set in order to facilitate integrated phenotyping experiments towards refined functional understanding of sorghum diversity

    The Relationship between Population Structure and Aluminum Tolerance in Cultivated Sorghum

    Get PDF
    Background: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. Methodology: Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking Alt(SB) and SbMATE expression was undertaken to assess a possible role for Alt(SB) in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. Conclusion/Significance: Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. Alt(SB) was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.CGIAR[G3007.04]McKnight FoundationFundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG)National Council for Scientific and Technological Development (CNPq
    • …
    corecore