25 research outputs found

    Pb-apatite framework as a generator of novel flat-band CuO based physics

    Full text link
    Based on DFT calculations, we present the basic electronic structure of CuPb9(PO4)6O (Cu-doped lead apatite, LK-99), in two scenarios: (1) where the structure is constrained to the P3 symmetry and (2) where no symmetry is imposed. At the DFT level, the former is predicted to be metallic while the latter is found to be a charge-transfer insulator. In both cases the filling of these states is nominally d9, consistent with the Cu2+ valence state, and Cu with a local magnetic moment ~0.7mB. In the metallic case we find these states to be unusually flat (0.2 eV dispersion), giving high DOS at EF that we argue can be a host for novel electronic physics, including potentially high temperature superconductivity. The flatness of the bands is the likely origin of symmetry-lowering gapping possibilities that would remove the spectral weight from EF. Since some experimental observations show metallic/semiconducting behavior, we propose that disorder is responsible for closing the gap. We consider a variety of possibilities that could possibly close the gap, but limit consideration to kinds of disorder that preserve electron count. For all possibilities we considered (spin disorder, O on vacancy sites, Cu on different Pb sites), the local Cu moment, and consequently the gap remains robust. We conclude that disorder responsible for metallic behavior entails some kind of doping where the electron count changes. We claim that the emergence of the flat bands should be due to weak wave function overlap between the Cu and O orbitals, owing to the directional character of the constituent orbitals. So, finding an appropriate host structure for minimizing hybridization between Cu and O while allowing them to still weakly interact should be a promising route for generating flat bands at EF which can lead to interesting electronic phenomena, regardless of whether LK-99 is a room-temperature superconductor.Comment: 11 pages, 6 figure

    Controlling the electronic structure of graphene using surface-adsorbate interactions

    Full text link
    We show that strong coupling between graphene and the substrate is mitigated when 0.8 monolayer of Na is adsorbed and consolidated on top graphene-on-Ni(111). Specifically, the {\pi} state is partially restored near the K-point and the energy gap between the {\pi} and {\pi}* states reduced to 1.3 eV after adsorption, as measured by angle-resolved photoemission spectroscopy. We show that this change is not caused by intercalation of Na to underneath graphene but it is caused by an electronic coupling between Na on top and graphene. We show further that graphene can be decoupled to a much higher extent when Na is intercalated to underneath graphene. After intercalation, the energy gap between the {\pi} and {\pi}* states is reduced to 0 eV and these states are identical as in freestanding and n-doped graphene. We conclude thus that two mechanisms of decoupling exist: a strong decoupling through intercalation, which is the same as one found using noble metals, and a weak decoupling caused by electronic interaction with the adsorbate on top

    Observation of Topological Surface State in High Temperature Superconductor MgB2

    Full text link
    The hunt for the benchmark topological superconductor (TSc) has been an extremely active research subject in condensed matter research, with quite a few candidates identified or proposed. However, low transition temperatures (Tc) and/or strong sensitivity to disorder and dopant levels in known TSc candidates have greatly hampered progress in this field. Here, we use Angle-resolved Photoemission Spectroscopy (ARPES) to show the presence of Dirac Nodal Lines (DNLs) and the corresponding topological surface states (TSS's) on the [010] faces of the Tc=39K s-wave BCS superconductor MgB2. Not only is this nearly triple the current record of superconducting Tc among all candidate TSc's, but the nature of these DNL states should make them highly tolerant against disorder and inadvertent doping variations. This makes MgB2 a promising high temperature platform for the study of topological superconductivity

    Influence of next-nearest-neighbor electron hopping on the static and dynamical properties of the 2D Hubbard model

    Full text link
    Comparing experimental data for high temperature cuprate superconductors with numerical results for electronic models, it is becoming apparent that a hopping along the plaquette diagonals has to be included to obtain a quantitative agreement. According to recent estimations the value of the diagonal hopping t′t' appears to be material dependent. However, the values for t′t' discussed in the literature were obtained comparing theoretical results in the weak coupling limit with experimental photoemission data and band structure calculations. The goal of this paper is to study how t′t' gets renormalized as the interaction between electrons, UU, increases. For this purpose, the effect of adding a bare diagonal hopping t′t' to the fully interacting two dimensional Hubbard model Hamiltonian is investigated using numerical techniques. Positive and negative values of t′t' are analyzed. Spin-spin correlations, n(k)n(\bf{k}), ⟨n⟩\langle n\rangle vs μ\mu, and local magnetic moments are studied for values of U/tU/t ranging from 0 to 6, and as a function of the electronic density. The influence of the diagonal hopping in the spectral function A(k,ω)A(\bf{k},\omega) is also discussed, and the changes in the gap present in the density of states at half-filling are studied. We introduce a new criterion to determine probable locations of Fermi surfaces at zero temperature from n(k)n(\bf{k}) data obtained at finite temperature. It appears that hole pockets at k=(π/2,π/2){\bf{k}}=(\pi/2,\pi/2) may be induced for negative t′t' while a positive t′t' produces similar features at k=(π,0){\bf{k}}=(\pi,0) and (0,π)(0,\pi). Comparisons with the standard 2D Hubbard (t′=0t'=0) model indicate that a negative t′t' hopping amplitude appears to be dynamically generated. In general, we conclude that it is very dangerous to extract a bare parameter of the Hamiltonian (t′)(t') from PES data whereComment: 9 pages (RevTex 3.0), 12 figures (postscript), files packed with uufile

    Universal Non-Polar Switching in Carbon-doped Transition Metal Oxides (TMOs) and Post TMOs

    Get PDF
    Transition metal oxides (TMOs) and post-TMOs (PTMOs), when doped with Carbon, show non-volatile current-voltage (I-V) characteristics, which are both universal and repeatable. We have shown spectroscopic evidence of the introduction of carbon-based impurity states inside the existing larger bandgap effectively creating a smaller bandgap which we suggest could enable Mott-like correlation effect. Our findings indicate new insights for yet to be understood unipolar and nonpolar resistive switching in the TMOs and PTMOs. We have shown that device switching is not thermal-energy dependent and have developed an electronic-dominated switching model that allows for the extreme temperature operation (from 1.5 K to 423 K) and state retention up to 673 K for a 1-hour bake. Importantly, we have optimized the technology in an industrial process and demonstrated integrated 1-transistor/1-resistor (1T1R) arrays up to 1 kbit with 47 nm devices on 300 mm wafers for advanced node CMOS-compatible correlated electron RAM (CeRAM). These devices are shown to operate with 2 ns write pulses and retain the memory states up to 200 C for 24 hours. The collection of attributes shown, including scalability to state-of-the-art dimensions, non-volatile operation to extreme low and high temperatures, fast write, and reduced stochasticity as compared to filamentary memories such as ReRAMs show the potential for a highly capable two-terminal back-end-of-line non-volatile memory.Comment: 28 pages, 17 figures, accepted in APL Material

    Hallmarks of the Mott-Metal Crossover in the Hole-Doped Pseudospin-1/2 Mott Insulator Sr\u3csub\u3e2\u3c/sub\u3eIrO\u3csub\u3e4\u3c/sub\u3e

    Get PDF
    The physics of doped Mott insulators remains controversial after decades of active research, hindered by the interplay among competing orders and fluctuations. It is thus highly desired to distinguish the intrinsic characters of the Mott-metal crossover from those of other origins. Here we investigate the evolution of electronic structure and dynamics of the hole-doped pseudospin-1/2 Mott insulator Sr2IrO4. The effective hole doping is achieved by replacing Ir with Rh atoms, with the chemical potential immediately jumping to or near the top of the lower Hubbard band. The doped iridates exhibit multiple iconic low-energy features previously observed in doped cuprates—pseudogaps, Fermi arcs and marginal-Fermi-liquid-like electronic scattering rates. We suggest these signatures are most likely an integral part of the material’s proximity to the Mott state, rather than from many of the most claimed mechanisms, including preformed electron pairing, quantum criticality or density-wave formation
    corecore