69 research outputs found

    Thermal stability of metastable magnetic skyrmions: Entropic narrowing and significance of internal eigenmodes

    Get PDF
    We compute annihilation rates of metastable magnetic skyrmions using a form of Langer's theory in the intermediate-to-high damping (IHD) regime. For a N\'eel skyrmion, a Bloch skyrmion, and an antiskyrmion, we look at two possible paths to annihilation: collapse and escape through a boundary. We also study the effects of a curved vs. a flat boundary, a second skyrmion and a non-magnetic defect. We find that the skyrmion's internal modes play a dominant role in the thermally activated transitions compared to the spin-wave excitations and that the relative contribution of internal modes depends on the nature of the transition process. Our calculations for a small skyrmion stabilized at zero-field show that collapse on a defect is the most probable path. In the absence of a defect, the annihilation is largely dominated by escape mechanisms, even though in this case the activation energy is higher than that of collapse processes. Escape through a flat boundary is found more probable than through a curved boundary. The potential source of stability of metastable skyrmions is therefore found not to lie in high activation energies, nor in the dynamics at the transition state, but comes from entropic narrowing in the saddle point region which leads to lowered attempt frequencies. This narrowing effect is found to be primarily associated with the skyrmion's internal modes.Comment: 14 pages, 9 figure

    Path sampling for lifetimes of metastable magnetic skyrmions and direct comparison with Kramers' method

    Get PDF
    We perform a direct comparison between Kramers' method in many dimensions -- i.e., Langer's theory -- adapted to magnetic spin systems, and a path sampling method in the form of forward flux sampling, as a means to compute collapse rates of metastable magnetic skyrmions. We show that a good agreement is obtained between the two methods. We report variations of the attempt frequency associated with skyrmion collapse by three to four orders of magnitude when varying the applied magnetic field by 5%\% of the exchange strength, which confirms the existence of a strong entropic contribution to the lifetime of skyrmions. This demonstrates that in complex systems, the knowledge of the rate prefactor, in addition to the internal energy barrier, is essential in order to properly estimate a lifetime.Comment: 5 pages, 5 figures (main text), 8 pages including supplemental materia

    Paths to annihilation of first and second-order (anti)skyrmions via (anti)meron nucleation on the frustrated square lattice

    Get PDF
    We study annihilation mechanisms of small first- and second-order skyrmions and antiskyrmions on the frustrated J1−J2−J3J_1-J_2-J_3 square lattice with broken inversion symmetry (DMI). We find that annihilation happens via the injection of the opposite topological charge in the form of meron or antimeron nucleation. Overall, the exchange frustration generates a complex energy landscape with not only many (meta)stable and unstable local energy solutions, but also many possible paths connecting them. Whenever possible, we compute the activation energy and attempt frequency for the annihilation of isolated topological defects. In particular, we compare the average lifetime of the antiskyrmion calculated with transition state theory with direct Langevin simulations, where an excellent agreement is obtained.Comment: 9 pages, 10 figure

    Role of inertia in two-dimensional deformation and breakup of a droplet

    Full text link
    We investigate by Lattice Boltzmann methods the effect of inertia on the deformation and break-up of a two-dimensional fluid droplet surrounded by fluid of equal viscosity (in a confined geometry) whose shear rate is increased very slowly. We give evidence that in two dimensions inertia is {\em necessary} for break-up, so that at zero Reynolds number the droplet deforms indefinitely without breaking. We identify two different routes to breakup via two-lobed and three-lobed structures respectively, and give evidence for a sharp transition between these routes as parameters are varied.Comment: 4 pages, 4 figure

    Dynamics of gravity driven three-dimensional thin films on hydrophilic-hydrophobic patterned substrates

    Full text link
    We investigate numerically the dynamics of unstable gravity driven three-dimensional thin liquid films on hydrophilic-hydrophobic patterned substrates of longitudinal stripes and checkerboard arrangements. The thin film can be guided preferentially on hydrophilic longitudinal stripes, while fingers develop on adjacent hydrophobic stripes if their width is large enough. On checkerboard patterns, the film fingering occurs on hydrophobic domains, while lateral spreading is favoured on hydrophilic domains, providing a mechanism to tune the growth rate of the film. By means of kinematical arguments, we quantitatively predict the growth rate of the contact line on checkerboard arrangements, providing a first step towards potential techniques that control thin film growth in experimental setups.Comment: 30 pages, 12 figure

    Detection of oligoclonal IgG kappa and IgG lambda bands in cerebrospinal fluid and serum with Hevyliteℱ antibodies. comparison with the free light chain oligoclonal pattern

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oligoclonal IgG bands in cerebrospinal fluid that are absent in serum indicate intrathecal IgG synthesis and are a sensitive marker of CNS inflammatory diseases, in particular multiple sclerosis. It may be of interest to determine whether these bands are predominantly IgGÎș or IgGλ.</p> <p>Methods</p> <p>We have used Hevyliteℱ antibodies and developed a technique for detection of oligoclonal IgGÎș and IgGλ bands by means of isoelectric focusing followed by immunoblotting. The same technique was used for oligoclonal free Îș and free λ detection. Among several techniques tested, affinity immunoblotting appears to be the most sensitive; it can detect less than 1 ng of IgGÎș or IgGλ paraprotein. We compared oligoclonal IgG profiles with those of oligoclonal IgGÎș and IgGλ. There was good agreement concerning the presence or absence of intrathecal synthesis. We observed the ratios between oligoclonal IgGÎș and IgGλ bands, and they did not always match the ratios between free Îș and free λ bands. We were also able to detect antigen-specific CSF-restricted oligoclonal IgGÎș and IgGλ bands in neuroborreliosis. It remains to be determined subsequently by a clinically-oriented prospective study, whether predominant IgGÎș/IgGλ or free Îș/free λ can be observed more frequently in particular diseases with oligoclonal IgG synthesis.</p> <p>Discussion</p> <p>Very sensitive detection of oligoclonal IgGÎș and IgGλ bands in cerebrospinal fluid with Hevylite antibodies is feasible; detection of antigen-specific IgGÎș or IgGλ is possible as well. In particular situations, e.g. when difficulties arise in distinguishing between oligoclonal and monoclonal pattern, the test may be of considerable clinical value.</p

    Oncogenic Stress Induced by Acute Hyper-Activation of Bcr-Abl Leads to Cell Death upon Induction of Excessive Aerobic Glycolysis

    Get PDF
    In response to deregulated oncogene activation, mammalian cells activate disposal programs such as programmed cell death. To investigate the mechanisms behind this oncogenic stress response we used Bcr-Abl over-expressing cells cultivated in presence of imatinib. Imatinib deprivation led to rapid induction of Bcr-Abl activity and over-stimulation of PI3K/Akt-, Ras/MAPK-, and JAK/STAT pathways. This resulted in a delayed necrosis-like cell death starting not before 48 hours after imatinib withdrawal. Cell death was preceded by enhanced glycolysis, glutaminolysis, and amino acid metabolism leading to elevated ATP and protein levels. This enhanced metabolism could be linked to induction of cell death as inhibition of glycolysis or glutaminolysis was sufficient to sustain cell viability. Therefore, these data provide first evidence that metabolic changes induced by Bcr-Abl hyper-activation are important mediators of oncogenic stress-induced cell death
    • 

    corecore