8 research outputs found

    Modeling leukemia stem cells with patient-derived induced pluripotent stem cells

    No full text
    Patient-derived induced pluripotent stem cells (iPSCs) have recently provided a new way to model acute myeloid leukemia (AML) and other myeloid malignancies. Here, we describe methods for the generation of patient-derived iPSCs from leukemia cells and for their subsequent directed in vitro differentiation into hematopoietic cells that recapitulate features of leukemia stem cells (LSCs) and leukemic blasts

    Acute Myeloid Leukemia iPSCs Reveal a Role for RUNX1 in the Maintenance of Human Leukemia Stem Cells

    No full text
    Leukemia stem cells (LSCs) are believed to have more distinct vulnerabilities than the bulk acute myeloid leukemia (AML) cells, but their rarity and the lack of universal markers for their prospective isolation hamper their study. We report that genetically clonal induced pluripotent stem cells (iPSCs) derived from an AML patient and characterized by exceptionally high engraftment potential give rise, upon hematopoietic differentiation, to a phenotypic hierarchy. Through fate-tracking experiments, xenotransplantation, and single-cell transcriptomics, we identify a cell fraction (iLSC) that can be isolated prospectively by means of adherent in vitro growth that resides on the apex of this hierarchy and fulfills the hallmark features of LSCs. Through integrative genomic studies of the iLSC transcriptome and chromatin landscape, we derive an LSC gene signature that predicts patient survival and uncovers a dependency of LSCs, across AML genotypes, on the RUNX1 transcription factor. These findings can empower efforts to therapeutically target AML LSCs. [Display omitted] •AML-iPSC-derived hematopoietic cells recapitulate a LSC hierarchy•iLSCs can be easily prospectively isolated•A LSC 16-gene set correlates with AML patient survival•The RUNX1 TF is critical for the maintenance of LSCs across AML genetic subgroups Wesely et al. report that AML-iPSC-derived hematopoietic cells are hierarchically organized and contain cells with hallmark features of LSCs (iLSCs). Through integrative genomic studies of bulk and single-cell transcriptomes and chromatin accessibility, they derive a LSC gene signature and identify RUNX1 as an AML LSC dependency with therapeutic implications

    Oral Microbial Ecology and the Role of Salivary Immunoglobulin A

    No full text
    corecore