335 research outputs found
Immunomodulatory role of phagocyte-derived chloramines involving lymphocyte glutathione
This study shows that human lymphocytes markedly decrease chloramines (long-lived oxidants) generated by polymorphonuclear neutrophils (PMN) after stimulation by phorbol-myristate-acetate or opsonized zymosan. In a cell-free model, reduced glutathione (GSH) scavenged chloramines, giving rise to oxidized glutathione (GSSG). In the cell system, treatment of lymphocytes with autologous PMN-derived chloramines induced a profound decrease in their total and reduced glutathione (GSH) content and markedly inhibited their proliferate responses to concanavalin-A and, to a lesser extent, phytohaemagglutinin. It is concluded that (i) lymphocytes may play a defensive role against phagocyte-derived oxidative stress by scavenging chloramines, and (ii) as this effect which is mediated by GSH affects lymphocyte proliferative responses, it may help to elucidate the still obscure mechanisms of oxidative stress associated immunodeficiency
Inflammation and CFTR: might neutrophils be the key in cystic fibrosis?
The aim of this hypothesis is to provide new insights into the still unclear mechanisms governing airway inflammation in cystic fibrosis. Although the genetic basis of cystic fibrosis as well as the molecular structure of cystic fibrosis transmembrane regulator (CFTR), the mutated protein which causes the disease, have been well defined, a clear relationship between the genetic defect and the pulmonary pathophysiology, especially chronic infections and neutrophil-dominated airway inflammation has not been established. Cystic fibrosis is thus a unique pathological situation in that neutrophils can be depicted as both an antiinfectious and a proinflammatory cell. In cystic fibrosis there is an emerging picture of an imbalance between these two roles with both a reduction in the antiinfectious efficacy and an augmentation of the proinflammatory functions. Better knowledge of fundamental defects in neutrophil function in cystic fibrosis as well as a novel cellular function of CFTR, which will be reviewed, will allow identification of potentially new clinical targets and aid selective therapeutic action aimed at counteracting the lethal neutrophil-induced airway inflammation. The rationale for colchicine therapy is a significant example of a drug which might act both at the molecular levels on CFTR expression in epithelial cells and on neutrophils to mediate antiinflammatory effects. Preliminary results are presented in this issue (Med Inflamm 1999; 8: 13-15)
AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: A potential target for N-acetylcysteine treatment in dialysis patients
AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: A potential target forN-acetylcysteine treatment in dialysis patients.BackgroundOxidative stress largely contributes to hemodialysis-associated lethal complications, thus explaining the urgent need of antioxidant-based therapeutic strategies in hemodialysis patients. We previously identified advanced oxidation protein products (AOPP) in the uremic plasma as exquisite markers of oxidative stress and potent mediators of monocyte activation. The present study was aimed at searching whether (1) AOPP can also trigger activation of polymorphonuclear neutrophils (PMN), and (2) whether AOPP-induced activation could be inhibited by N-acetylcysteine (NAC), a widely used compound which has been shown to prevent oxidative injury to kidney.MethodsBoth human serum albumin (HAS) AOPP (i.e., HOCl-modified HSA in vitro preparations and AOPP extracted from plasma of hemodialysis patients) were tested for their capacity to trigger phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and myeloperoxidase (MPO)-dependent activities as measured by lucigenin- and luminol-amplified chemiluminescence (CL), respectively, as compared to receptor-dependent [opsonized zymosan or receptor-independent phorbol myristate acetate (PMA)]. The effect of PMN priming by platelet-activating factor (PAF), and the effect of NAC on normal monocyte and on normal or hemodialysis patient's (N = 16) PMN oxidative responses were compared.ResultsHSA-AOPP triggered in a HOCl dose-dependent manner both NADPH-oxidase- and MPO-dependent CL of PMN. This latter was further enhanced by PAF priming. Plasma-derived AOPP obtained from hemodialysis patients also triggered PMN respiratory burst. NAC significantly reduced HSA-AOPP–mediated responses of normal monocyte and of normal and uremic PMN but had no significant effect on opsonized zymosan- or PMA-induced CL responses.ConclusionThis dual potential of NAC to inhibit phagocyte oxidative responses induced by HSA-AOPP without affecting those mediated by compounds mimicking pathogens supports the proposal of a therapeutic trial with NAC aimed at reducing oxidative stress–related inflammation in hemodialysis patients
Myeloperoxidase Promoter Polymorphism −463G Is Associated With More Severe Clinical Expression of Cystic Fibrosis Pulmonary Disease
The severity of cystic fibrosis (CF) pulmonary disease is not directly related to CFTR genotype but depends upon several parameters, including neutrophil-dominated inflammation. Identification of agents modulating inflammation constitutes a relevant goal. Myeloperoxidase (MPO) is involved in both microbicidal and proinflammatory neutrophil activities. The aim of this study was to evaluate whether the −463GA MPO promoter polymorphism is linked to clinical severity of CF-associated pulmonary inflammation. This polymorphism significantly affects the level of MPO gene expression in leukocytes and the G allele is more expressing than the A allele. We show that MPO genotype significantly influences the severity of pulmonary disease in early stages, prior to the development of chronic lung infections, with GG genotype being associated with more severe CF disease. Our findings indicate that the level of MPO gene expression influences the CF pathogenesis, presumably reflecting cellular damage by MPO-generated oxidants or other activity of MPO in airway inflammation
Interest of colchicine for the treatment of cystic fibrosis patients. Preliminary report.
Cystic fibrosis (CF) lung disease is characterized by persistent inflammation. Antiinflammatory drugs, such as corticosteroids and ibuprofen, have proved to slow the decline of pulmonary function although their use is limited because of frequent adverse events. We hypothesized that colchicine could be an alternative treatment because of its antiinflammatory properties and upregulatory effect on cystic fibrosis transmembrane regulator (CFTR) closely related proteins. We herein present results obtained in an open study of eight CF children treated with colchicine for at least 6 months. Clinical status was better in all patients and respiratory function tests significantly improved in five. Median duration of antibiotherapy decreased significantly. These preliminary results support our hypothesis of a beneficial effect of colchicine in CF patients and stress the need for a controlled therapeutic trial
Oxidative stress in hepatitis C infected end-stage renal disease subjects
BACKGROUND: Both uremia and hepatitis C infection is associated with increased oxidative stress. In the present study, we aimed to find out whether hepatitis C infection has any impact on oxidative stress in hemodialysis subjects. METHODS: Sixteen hepatitis C (+) hemodialysis subjects, 24 hepatitis C negative hemodialysis subjects and 24 healthy subjects were included. Total antioxidant capacity, total peroxide level and oxidative stress index were determined in all subjects. RESULTS: Total antioxidant capacity was significantly higher in controls than hemodialysis subjects with or without hepatitis C infection (all p < 0.05/3), while total peroxide level and oxidative stress index were significantly lower (all p < 0.05/3). Hepatitis C (-) hemodialysis subjects had higher total antioxidant capacity compared to hepatitis C (+) hemodialysis subjects (all p < 0.05/3). Total peroxide level and oxidative stress index was comparable between hemodialysis subjects with or without hepatitis C infection (p > 0.05/3). CONCLUSION: Oxidative stress is increased in both hepatitis C (+) and hepatitis C (-) hemodialysis subjects. However, hepatitis C infection seems to not cause any additional increase in oxidative stress in hemodialysis subjects and it may be partly due to protective effect of dialysis treatment on hepatitis C infection
Effect of end-stage renal disease on B-lymphocyte subpopulations, IL-7, BAFF and BAFF receptor expression
Background. End-stage renal disease (ESRD) results in increased susceptibility to infections, impaired response to vaccination and diffuse B-cell lymphopenia. However, the precise nature and mechanism of ESRD-induced B-cell lymphopenia remains unclear. Therefore, we studied the distribution of major B-cell subsets, B-cell growth, differentiation and survival factors, IL-7 and BAFF, and their receptors in 21 haemodialysis patients and 21 controls
In Vitro and in Vivo Antioxidant Properties of the Plant-Based Supplement Greens+™
Dietary antioxidants play an important role against oxidation, an underlying mechanism in the incidence of chronic diseases. Greens+ is a commercially available preparation containing a variety of plant-derived ingredients. The aim of the current study was to evaluate the antioxidant potential of the methanolic extract of greens+ powder using in vitro and in vivo techniques. In vitro studies were conducted using a liposome model system to simulate biological cell membranes. Total antioxidant potential and polyphenol content of the herbal preparation was measured. For in vivo analysis, 10 healthy human subjects consumed either three or six teaspoons of greens+ per day for four weeks. Blood samples were analyzed at baseline and at the conclusion of the treatment period for total antioxidant capacity, polyphenol content, protein, lipid and LDL oxidation, and the level of glutathione peroxidase. Results showed that greens+ supplementation was well tolerated and increased serum antioxidant potential at higher levels of intake in a dose-dependent manner. HPLC analysis showed the presence of quercetin, apigenin, kaempferol and luteolin in the supplement. Plasma analysis indicated the presence of kaempferol only. A statistically significant (p < 0.05) reduction in protein and lipid oxidation was observed. Based on its antioxidant properties, the results suggest that greens+ might play a role in reducing the risk of chronic diseases involving a burden of oxidative damage
- …