81 research outputs found

    Stochastic Resonance in Spatially Extended Systems: The Role of Far from Equilibrium Potentials

    Full text link
    Previous works have shown numerically that the response of a ``stochastic resonator'' is enhanced as a consequence of spatial coupling. Also, similar results have been obtained in a reaction-diffusion model by studying the phenomenon of stochastic resonance (SR) in spatially extended systems using "nonequilibrium potential" (NEP) techniques. The knowledge of the NEP for such systems allows us to determine the probability for the decay of the metastable extended states, and approximate expressions for the correlation function and the signal-to-noise ratio (SNR). Here, exploiting known forms of the NEP, we have investigated the role of NEP's symmetry on SR, the enhancement of the SNR due to a "selectivity" of the coupling or diffusion parameter, and discussed competition between local and nonlocal (excitatory) coupling.Comment: RevTex, 22 pgs, 6 figures. Invited Talk STATPHYS21, Proceedings to be published in Physica

    Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers

    Get PDF
    Formation of coherent structures and patterns from unstable uniform state or noise is a fundamental physical phenomenon that occurs in various areas of science ranging from biology to astrophysics. Understanding of the underlying mechanisms of such processes can both improve our general interdisciplinary knowledge about complex nonlinear systems and lead to new practical engineering techniques. Modern optics with its high precision measurements offers excellent test-beds for studying complex nonlinear dynamics, though capturing transient rapid formation of optical solitons is technically challenging. Here we unveil the build-up of dissipative soliton in mode-locked fibre lasers using dispersive Fourier transform to measure spectral dynamics and employing autocorrelation analysis to investigate temporal evolution. Numerical simulations corroborate experimental observations, and indicate an underlying universality in the pulse formation. Statistical analysis identifies correlations and dependencies during the build-up phase. Our study may open up possibilities for real-time observation of various nonlinear structures in photonic systems

    Lung epithelial stem cells and their niches : Fgf10 takes center stage

    Get PDF
    Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF)

    The circuitry of the tumor microenvironment in adult and pediatric Hodgkin lymphoma: cellular composition, cytokine profile, EBV, and exosomes

    No full text
    Background: Classical Hodgkin lymphoma (cHL) is a unique lymphoid malignancy with a tumor microenvironment (TME) consisting of a small number of neoplastic—Hodgkin and Reed-Sternberg (H-RS) cells (\u3c1%), surrounded by a large number of nonneoplastic infiltrating immune cells (\u3e90%). The TME of cHL critically depends on immune cells to support tumor growth as H-RS cells cannot survive and proliferate in isolation. Recent Findings: Programmed cell death protein 1 (PD-1) ligand expressed on H-RS cells inhibits the clearance of tumor by causing T-cell exhaustion. Nivolumab and pembrolizumab, PD-1 inhibitors, have been proven to be effective in treating adult and pediatric patients with R/R cHL. Tumor-associated macrophages (TAMs) are a central component of TME and are known to cause poor prognosis in adult HL. However, the prognostic impact of CD68+ TAMs in pediatric HL remains ambiguous. EBV modulates the tumor milieu of HL and plays a strategic role in immune escape by enrichment of the TME with Treg cells and associated immunosuppressive cytokines in adult HL. In contrast, EBV+ pediatric patients have increased infiltration of CD8+ T-cells and show a better therapeutic response suggesting viral-related TME is distinct in childhood HL. The role of CASP3 in apoptosis of H-RS cells and its correlation with response prediction in adult and pediatric HL suggest it may serve as a potential biomarker. In cHL, CD30, EBV, and NF-ÎșB signaling employ exosomes for cell–cell communication that triggers the migration capacity of fibroblasts, stimulate to produce proinflammatory cytokines, and help to create a tumor-supportive microenvironment. Conclusion: The cHL microenvironment is distinct in adult and pediatric HL. Future studies are required to understand the role of interplay between H-RS cells and EBV-associated microenvironment and their clinical outcome. They may present novel therapeutic targets for the development of antilymphoma therapy

    Extracellular Fatty Acid Binding Protein (Ex-FABP) is a stress protein expressed during chondrocyte and myoblast differentiation.

    No full text

    Parathyroid hormone (PTH 1-34) and parathyroid hormone-related protein (PTHrP 1-34) promote reversion of hypertrophic chondrocytes to a prehypertrophic proliferating phenotype and prevent terminal differentiation to osteoblast-like cells.

    No full text
    The effects of parathyroid hormone/parathyroid hormone-related protein (PTH/PTHrP) on late events in chondrocyte differentiation were investigated by a dual in vitro model where conditions of suspension versus adhesion culturing are permissive either for apoptosis or for the further differentiation of hypertrophic chondrocytes to osteoblast- like cells. Chick embryo hypertrophic chondrocytes maintained in suspension synthesized type II and type X collagen and organized their extracellular matrix, forming a tissue highly reminiscent of true cartilage, which eventually mineralized. The formation of mineralized cartilage was associated with the expression of alkaline phosphatase (ALP), arrest of cell growth, and apoptosis, as observed in growth plates in vivo. In this system, PTH/PTHrP was found to repress type X collagen synthesis, ALP expression, and cartilage matrix mineralization. Cell proliferation was resumed, whereas apoptosis was blocked. Hypertrophic chondrocytes cultured in adherent conditions in the presence of retinoic acid underwent further differentiation to osteoblast-like cells (i.e., they resumed cell proliferation, switched to type I collagen synthesis, and produced a mineralizing bone-like matrix). In this system, PTH addition to culture completely inhibited the expression of ALP and matrix mineralization, whereas cell proliferation and expression of type I collagen were not affected. These data indicate that PTH/PTHrP inhibit both the mineralization of a cartilage-like matrix and apoptosis (mimicked in the suspension culture) and the production of a mineralizing bone-like matrix, characterizing further differentiation of hypertrophic chondrocytes to osteoblasts like cells (mimicked in adhesion culture). Treatment of chondrocyte cultures with PTH/PTHrP reverts cultured cells in states of differentiation earlier than hypertrophic chondrocytes (suspension), or earlier than mineralizing osteoblast-like cells (adhesion). However, withdrawal of hormonal stimulation redirects cells toward their distinct, microenvironment-dependent, terminal differentiation and fate
    • 

    corecore