159 research outputs found

    The representation of snow in land surface schemes: results from PILPS 2(d)

    Get PDF
    Permission to place copies of these works on this server has been provided by the American Meteorological Society (AMS). The AMS does not guarantee that the copies provided here are accurate copies of the published work. © Copyright 2001 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or [email protected] land surface schemes (LSSs) performed simulations forced by 18 yr of observed meteorological data from a grassland catchment at Valdai, Russia, as part of the Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase 2(d). In this paper the authors examine the simulation of snow. In comparison with observations, the models are able to capture the broad features of the snow regime on both an intra- and interannual basis. However, weaknesses in the simulations exist, and early season ablation events are a significant source of model scatter. Over the 18-yr simulation, systematic differences between the models’ snow simulations are evident and reveal specific aspects of snow model parameterization and design as being responsible. Vapor exchange at the snow surface varies widely among the models, ranging from a large net loss to a small net source for the snow season. Snow albedo, fractional snow cover, and their interplay have a large effect on energy available for ablation, with differences among models most evident at low snow depths. The incorporation of the snowpack within an LSS structure affects the method by which snow accesses, as well as utilizes, available energy for ablation. The sensitivity of some models to longwave radiation, the dominant winter radiative flux, is partly due to a stability-induced feedback and the differing abilities of models to exchange turbulent energy with the atmosphere. Results presented in this paper suggest where weaknesses in macroscale snow modeling lie and where both theoretical and observational work should be focused to address these weaknesses

    The current understanding of precision medicine and personalised medicine in selected research disciplines: study protocol of a systematic concept analysis

    Get PDF
    Introduction The terms ‘precision medicine’ and ‘personalised medicine’ have become key terms in health-related research and in science-related public communication. However, the application of these two concepts and their interpretation in various disciplines are heterogeneous, which also affects research translation and public awareness. This leads to confusion regarding the use and distinction of the two concepts. Our aim is to provide a snapshot of the current understanding of these concepts.Methods and analysis Our study will use Rodgers’ evolutionary concept analysis to systematically examine the current understanding of the concepts ‘precision medicine’ and ‘personalised medicine’ in clinical medicine, biomedicine (incorporating genomics and bioinformatics), health services research, physics, chemistry, engineering, machine learning and artificial intelligence, and to identify their respective attributes (clusters of characteristics) and surrogate and related terms. A systematic search of the literature will be conducted for 2016–2022 using databases relevant to each of these disciplines: ACM Digital Library, CINAHL, Cochrane Library, F1000Research, IEEE Xplore, PubMed/Medline, Science Direct, Scopus and Web of Science. These are among the most representative databases for the included disciplines. We will examine similarities and differences in definitions of ‘precision medicine’ and ‘personalised medicine’ in the respective disciplines and across (sub)disciplines, including attributes of each term. This will enable us to determine how these two concepts are distinguished.Ethics and dissemination Following ethical and research standards, we will comprehensively report the methodology for a systematic analysis following Rodgers’ concept analysis method. Our systematic concept analysis will contribute to the clarification of the two concepts and distinction in their application in given settings and circumstances. Such a broad concept analysis will contribute to non-systematic syntheses of the concepts, or occasional systematic reviews on one of the concepts that have been published in specific disciplines, in order to facilitate interdisciplinary communication, translational medical research and implementation science.</p

    Anaesthesiological strategies in elective craniotomy: randomized, equivalence, open trial – The NeuroMorfeo trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies have attempted to determine the <it>"best" </it>anaesthetic technique for neurosurgical procedures in patients without intracranial hypertension. So far, no study comparing intravenous (IA) with volatile-based neuroanaesthesia (VA) has been able to demonstrate major outcome differences nor a superiority of one of the two strategies in patients undergoing elective supratentorial neurosurgery. Therefore, current practice varies and includes the use of either volatile or intravenous anaesthetics in addition to narcotics. Actually the choice of the anaestesiological strategy depends only on the anaesthetists' preferences or institutional policies.</p> <p>This trial, named NeuroMorfeo, aims to assess the equivalence between volatile and intravenous anaesthetics for neurosurgical procedures.</p> <p>Methods/Design</p> <p>NeuroMorfeo is a multicenter, randomized, open label, controlled trial, based on an equivalence design. Patients aged between 18 and 75 years, scheduled for elective craniotomy for supratentorial lesion without signs of intracranial hypertension, in good physical state (ASA I-III) and Glasgow Coma Scale (GCS) equal to 15, are randomly assigned to one of three anaesthesiological strategies (two VA arms, sevoflurane + fentanyl or sevoflurane + remifentanil, and one IA, propofol + remifentanil). The equivalence between intravenous and volatile-based neuroanaesthesia will be evaluated by comparing the intervals required to reach, after anaesthesia discontinuation, a modified Aldrete score ≥ 9 (primary end-point). Two statistical comparisons have been planned:</p> <p>1) sevoflurane + fentanyl vs. propofol + remifentanil;</p> <p>2) sevoflurane + remifentanil vs. propofol + remifentanil.</p> <p>Secondary end-points include: an assessment of neurovegetative stress based on (a) measurement of urinary catecholamines and plasma and urinary cortisol and (b) estimate of sympathetic/parasympathetic balance by power spectrum analyses of electrocardiographic tracings recorded during anaesthesia; intraoperative adverse events; evaluation of surgical field; postoperative adverse events; patient's satisfaction and analysis of costs.</p> <p>411 patients will be recruited in 14 Italian centers during an 18-month period.</p> <p>Discussion</p> <p>We presented the development phase of this anaesthesiological on-going trial. The recruitment started December 4<sup>th</sup>, 2007 and up to 4<sup>th</sup>, December 2008, 314 patients have been enrolled.</p

    Development of a Core Outcome Set for effectiveness trials aimed at optimising prescribing in older adults in care homes

    Get PDF
    Background: Prescribing medicines for older adults in care homes is known to be sub-optimal. Whilst trials testing interventions to optimise prescribing in this setting have been published, heterogeneity in outcome reporting has hindered comparison of interventions, thus limiting evidence synthesis. The aim of this study was to develop a core outcome set (COS), a list of outcomes which should be measured and reported, as a minimum, for all effectiveness trials involving optimising prescribing in care homes. The COS was developed as part of the Care Homes Independent Pharmacist Prescribing Study (CHIPPS). Methods: A long-list of outcomes was identified through a review of published literature and stakeholder input. Outcomes were reviewed and refined prior to entering a two-round online Delphi exercise and then distributed via a web link to the CHIPPS Management Team, a multidisciplinary team including pharmacists, doctors and Patient Public Involvement representatives (amongst others), who comprised the Delphi panel. The Delphi panellists (n = 19) rated the importance of outcomes on a 9-point Likert scale from 1 (not important) to 9 (critically important). Consensus for an outcome being included in the COS was defined as ≥70% participants scoring 7–9 and <15% scoring 1–3. Exclusion was defined as ≥70% scoring 1–3 and <15% 7–9. Individual and group scores were fed back to participants alongside the second questionnaire round, which included outcomes for which no consensus had been achieved. Results: A long-list of 63 potential outcomes was identified. Refinement of this long-list of outcomes resulted in 29 outcomes, which were included in the Delphi questionnaire (round 1). Following both rounds of the Delphi exercise, 13 outcomes (organised into seven overarching domains: medication appropriateness, adverse drug events, prescribing errors, falls, quality of life, all-cause mortality and admissions to hospital (and associated costs)) met the criteria for inclusion in the final COS. Conclusions: We have developed a COS for effectiveness trials aimed at optimising prescribing in older adults in care homes using robust methodology. Widespread adoption of this COS will facilitate evidence synthesis between trials. Future work should focus on evaluating appropriate tools for these key outcomes to further reduce heterogeneity in outcome measurement in this context

    Design and Organization of the Dexamethasone, Light Anesthesia and Tight Glucose Control (DeLiT) Trial: a factorial trial evaluating the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The perioperative period is characterized by an intense inflammatory response. Perioperative inflammation promotes postoperative morbidity and increases mortality. Blunting the inflammatory response to surgical trauma might thus improve perioperative outcomes. We are studying three interventions that potentially modulate perioperative inflammation: corticosteroids, tight glucose control, and light anesthesia.</p> <p>Methods/Design</p> <p>The DeLiT Trial is a factorial randomized single-center trial of dexamethasone vs placebo, intraoperative tight vs. conventional glucose control, and light vs deep anesthesia in patients undergoing major non-cardiac surgery. Anesthetic depth will be estimated with Bispectral Index (BIS) monitoring (Aspect medical, Newton, MA). The primary outcome is a composite of major postoperative morbidity including myocardial infarction, stroke, sepsis, and 30-day mortality. C-reactive protein, a measure of the inflammatory response, will be evaluated as a secondary outcome. One-year all-cause mortality as well as post-operative delirium will be additional secondary outcomes. We will enroll up to 970 patients which will provide 90% power to detect a 40% reduction in the primary outcome, including interim analyses for efficacy and futility at 25%, 50% and 75% enrollment.</p> <p>Discussion</p> <p>The DeLiT trial started in February 2007. We expect to reach our second interim analysis point in 2010. This large randomized controlled trial will provide a reliable assessment of the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery. The factorial design will enable us to simultaneously study the effects of the three interventions in the same population, both individually and in different combinations. Such a design is an economically efficient way to study the three interventions in one clinical trial vs three.</p> <p>Trial registration</p> <p><b>This trial is registered at </b>Clinicaltrials.gov <b>#</b>: NTC00433251</p

    Perioperative fluid and volume management: physiological basis, tools and strategies

    Get PDF
    Fluid and volume therapy is an important cornerstone of treating critically ill patients in the intensive care unit and in the operating room. New findings concerning the vascular barrier, its physiological functions, and its role regarding vascular leakage have lead to a new view of fluid and volume administration. Avoiding hypervolemia, as well as hypovolemia, plays a pivotal role when treating patients both perioperatively and in the intensive care unit. The various studies comparing restrictive vs. liberal fluid and volume management are not directly comparable, do not differ (in most instances) between colloid and crystalloid administration, and mostly do not refer to the vascular barrier's physiologic basis. In addition, very few studies have analyzed the use of advanced hemodynamic monitoring for volume management
    corecore