186 research outputs found

    Peril, Pandemic, and Crisis: Asian American Studies

    Get PDF
    Hello and Welcome to our Zine!! We are so happy you stopped by! :) We were presented the opportunity to create a zine on Asian American studies through Josen Diaz’s ETHN course. Although this started out as a project, it became so much more to our group. We had the opportunity to explore different Asian American cultures, their history, and their influence on American culture and politics. This project allowed us to relate all of the historical readings from the Chinese Exclusion Act and the world wars to events that occur today. Over the semester, we developed our overall knowledge on ethnic studies and expanded worldviews; we hope that reading this zine will allow you to do the same. In this document, we attempted to construct a creative medium which conveys all of our thoughts and ideas on the subject matter at hand. The three of us are juniors at the University of San Diego studying under varying disciplines. We all come from different parts of California and brought different perspectives to the table when brainstorming and working on the zine each week. Before reading this Zine, we want all readers to understand that the opinions and viewpoints shared here are our subjective views relating to academic texts. We are by no means authorities on these topics, and we encourage you to do your own research to expand your personal knowledge. This is a great place to begin or continue one\u27s academic journey into Asian American studies, but it is not intended to be used as a basis of knowledge or a foundational source. We hope that you all enjoy reading this zine and find its contents interesting and informative.https://digital.sandiego.edu/ethn-zines/1004/thumbnail.jp

    Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees

    Get PDF
    Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB) of the N. ceranae genome derived from pyrosequence data, including initial gene models and genomic comparisons with other members of this highly derived fungal lineage. N. ceranae has a strongly AT-biased genome (74% A+T) and a diversity of repetitive elements, complicating the assembly. Of 2,614 predicted protein-coding sequences, we conservatively estimate that 1,366 have homologs in the microsporidian Encephalitozoon cuniculi, the most closely related published genome sequence. We identify genes conserved among microsporidia that lack clear homology outside this group, which are of special interest as potential virulence factors in this group of obligate parasites. A substantial fraction of the diminutive N. ceranae proteome consists of novel and transposableelement proteins. For a majority of well-supported gene models, a conserved sense-strand motif can be found within 15 bases upstream of the start codon; a previously uncharacterized version of this motif is also present in E. cuniculi. These comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and will drive investigations into honey bee-Nosema interactions

    Assessing the feasibility of GS FLX Pyrosequencing for sequencing the Atlantic salmon genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With a whole genome duplication event and wealth of biological data, salmonids are excellent model organisms for studying evolutionary processes, fates of duplicated genes and genetic and physiological processes associated with complex behavioral phenotypes. It is surprising therefore, that no salmonid genome has been sequenced. Atlantic salmon (<it>Salmo salar</it>) is a good representative salmonid for sequencing given its importance in aquaculture and the genomic resources available. However, the size and complexity of the genome combined with the lack of a sequenced reference genome from a closely related fish makes assembly challenging. Given the cost and time limitations of Sanger sequencing as well as recent improvements to next generation sequencing technologies, we examined the feasibility of using the Genome Sequencer (GS) FLX pyrosequencing system to obtain the sequence of a salmonid genome. Eight pooled BACs belonging to a minimum tiling path covering ~1 Mb of the Atlantic salmon genome were sequenced by GS FLX shotgun and Long Paired End sequencing and compared with a ninth BAC sequenced by Sanger sequencing of a shotgun library.</p> <p>Results</p> <p>An initial assembly using only GS FLX shotgun sequences (average read length 248.5 bp) with ~30× coverage allowed gene identification, but was incomplete even when 126 Sanger-generated BAC-end sequences (~0.09× coverage) were incorporated. The addition of paired end sequencing reads (additional ~26× coverage) produced a final assembly comprising 175 contigs assembled into four scaffolds with 171 gaps. Sanger sequencing of the ninth BAC (~10.5× coverage) produced nine contigs and two scaffolds. The number of scaffolds produced by the GS FLX assembly was comparable to Sanger-generated sequencing; however, the number of gaps was much higher in the GS FLX assembly.</p> <p>Conclusion</p> <p>These results represent the first use of GS FLX paired end reads for <it>de novo </it>sequence assembly. Our data demonstrated that this improved the GS FLX assemblies; however, with respect to <it>de novo </it>sequencing of complex genomes, the GS FLX technology is limited to gene mining and establishing a set of ordered sequence contigs. Currently, for a salmonid reference sequence, it appears that a substantial portion of sequencing should be done using Sanger technology.</p

    Seroprevalence of anti-SARS-CoV-2 IgG antibodies, risk factors for infection and associated symptoms in Geneva, Switzerland: a population-based study.

    Get PDF
    Aims: To assess SARS-CoV-2 seroprevalence over the first epidemic wave in the canton of Geneva, Switzerland, as well as risk factors for infection and symptoms associated with IgG seropositivity. Methods: Between April and June 2020, former participants of a representative survey of the 20-74-year-old population of canton Geneva were invited to participate in the study, along with household members aged over 5 years. Blood samples were tested for anti-SARS-CoV-2 immunoglobulin G. Questionnaires were self-administered. We estimated seroprevalence with a Bayesian model accounting for test performance and sampling design. Results: We included 8344 participants, with an overall adjusted seroprevalence of 7.8% (95% credible interval 6.8-8.9). Seroprevalence was highest among 18-49 year-olds (9.5%), and lowest in 5-9-year-old children (4.3%) and individuals >65 years (4.7-5.4%). Odds of seropositivity were significantly reduced for female retirees and unemployed men compared to employed individuals, and smokers compared to non-smokers. We found no significant association between occupation, level of education, neighborhood income and the risk of being seropositive. The symptom most strongly associated with seropositivity was anosmia/dysgeusia. Conclusions: Anti-SARS-CoV-2 population seroprevalence remained low after the first wave in Geneva. Socioeconomic factors were not associated with seropositivity in this sample. The elderly, young children and smokers were less frequently seropositive, although it is not clear how biology and behaviours shape these differences

    Elevated dNTP levels suppress hyper-recombination in Saccharomyces cerevisiae S-phase checkpoint mutants

    Get PDF
    MEC1, the essential yeast homolog of the human ATR/ATM genes, controls the S-phase checkpoint and prevents replication fork collapse at slow zones of DNA replication. The viability of hypomorphic mec1-21 is reduced in the rad52 mutant, defective in homologous recombination, suggesting that replication generates recombinogenic lesions. We previously observed a 6-, 10- and 30-fold higher rate of spontaneous sister chromatid exchange (SCE), heteroallelic recombination and translocations, respectively, in mec1-21 mutants compared to wild-type. Here we report that the hyper-recombination phenotype correlates with lower deoxyribonucleoside triphosphate (dNTP) levels, compared to wild-type. By introducing a dun1 mutation, thus eliminating inducible expression of ribonucleotide reductase in mec1-21, rates of spontaneous SCE increased 15-fold above wild-type. All the hyper-recombination phenotypes were reduced by SML1 deletions, which increase dNTP levels. Measurements of dNTP pools indicated that, compared to wild-type, there was a significant decrease in dNTP levels in mec1-21, dun1 and mec1-21 dun1, while the dNTP levels of mec1-21 sml1, mec1-21 dun1 sml1 and sml1 mutants were ∼2-fold higher. Interestingly, higher dNTP levels in mec1-21 dun1 sml1 correlate with ∼2-fold higher rate of spontaneous mutagenesis, compared to mec1-21 dun1. We suggest that higher dNTP levels in specific checkpoint mutants suppress the formation of recombinogenic lesions

    DNA replication stress-induced loss of reproductive capacity in S. cerevisiae and its inhibition by caloric restriction

    Get PDF
    In many organisms, attenuation of growth signaling by caloric restriction or mutational inactivation of growth signaling pathways extends lifespan and protects against cancer and other age-related diseases. The focus of many efforts to understand these effects has been on the induction of oxidative stress defenses that inhibit cellular senescence and cell death. Here we show that in the model organism S. cerevisiae, growth signaling induces entry of cells in stationary phase into S phase in parallel with loss of reproductive capacity, which is enhanced by elevated concentrations of glucose. Overexpression of RNR1 encoding a ribonucleotide reductase subunit required for the synthesis of deoxynucleotide triphosphates and DNA replication suppresses the accelerated loss of reproductive capacity of cells cultured in high glucose. The reduced reproductive capacity of these cells is also suppressed by excess threonine, which buffers dNTP pools when ribonucleotide reductase activity is limiting. Caloric restriction or inactivation of the AKT homolog Sch9p inhibits senescence and death in stationary phase cells caused by the DNA replication inhibitor hydroxyurea or by inactivation of the DNA replication and repair proteins Sgs1p or Rad27p. Inhibition of DNA replication stress represents a novel mechanism by which caloric restriction promotes longevity in S. cerevisiae. A similar mechanism may promote longevity and inhibit cancer and other age-related diseases in humans.We wish to thank Molly Burhans for preparing plasmid DNA and Figure 5. This research was supported by a National Cancer Institute Support Grant (P30CA016056) to Roswell Park Cancer Institute and by FCT - Fundacao para a Ciencia e Tecnologia (PTDC/BIA-MIC/114116/2009), Portugal. B. S. M. received a fellowship from FCT (SRFH/BD/41674/2007)

    The Cassava Genome: Current Progress, Future Directions

    Get PDF
    The starchy swollen roots of cassava provide an essential food source for nearly a billion people, as well as possibilities for bioenergy, yet improvements to nutritional content and resistance to threatening diseases are currently impeded. A 454-based whole genome shotgun sequence has been assembled, which covers 69% of the predicted genome size and 96% of protein-coding gene space, with genome finishing underway. The predicted 30,666 genes and 3,485 alternate splice forms are supported by 1.4 M expressed sequence tags (ESTs). Maps based on simple sequence repeat (SSR)-, and EST-derived single nucleotide polymorphisms (SNPs) already exist. Thanks to the genome sequence, a high-density linkage map is currently being developed from a cross between two diverse cassava cultivars: one susceptible to cassava brown streak disease; the other resistant. An efficient genotyping-by-sequencing (GBS) approach is being developed to catalog SNPs both within the mapping population and among diverse African farmer-preferred varieties of cassava. These resources will accelerate marker-assisted breeding programs, allowing improvements in disease-resistance and nutrition, and will help us understand the genetic basis for disease resistance

    The budding yeast protein Chl1p is required to preserve genome integrity upon DNA damage in S-phase

    Get PDF
    The budding yeast protein, Chl1p, is required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination and aging. In this work, we show that Chl1p is also required for viability when DNA replication is stressed, either due to mutations or if cells are treated with genotoxic agents like methylmethane sulfonate (MMS) and ultraviolet (UV) rays. The chl1 mutation caused synthetic growth defects with mutations in DNA replication genes. At semi-permissive temperatures, the double mutants grew poorly, were less viable and showed nuclear fragmentation. They were, however, not limited in their bulk DNA synthesis. When chl1 cells were treated with relatively low levels of MMS in S-phase, they lost viability. The S-phase DNA damage checkpoint pathway, however, remained active in these cells. Agarose gel electrophoresis of genomic DNA isolated from wild-type and chl1 cells, after recovery from MMS treatment, suggested that the wild-type was more proficient in the repair of DNA damage than the mutant. Our work suggests that Chl1p is required for genome integrity when cells suffer endogenously or exogenously induced DNA damage

    Comprehensive resequence analysis of a 136 kb region of human chromosome 8q24 associated with prostate and colon cancers

    Get PDF
    Recently, genome-wide association studies have identified loci across a segment of chromosome 8q24 (128,100,000–128,700,000) associated with the risk of breast, colon and prostate cancers. At least three regions of 8q24 have been independently associated with prostate cancer risk; the most centromeric of which appears to be population specific. Haplotypes in two contiguous but independent loci, marked by rs6983267 and rs1447295, have been identified in the Cancer Genetic Markers of Susceptibility project (http://cgems.cancer.gov), which genotyped more than 5,000 prostate cancer cases and 5,000 controls of European origin. The rs6983267 locus is also strongly associated with colorectal cancer. To ascertain a comprehensive catalog of common single-nucleotide polymorphisms (SNPs) across the two regions, we conducted a resequence analysis of 136 kb (chr8: 128,473,000–128,609,802) using the Roche/454 next-generation sequencing technology in 39 prostate cancer cases and 40 controls of European origin. We have characterized a comprehensive catalog of common (MAF > 1%) SNPs within this region, including 442 novel SNPs and have determined the pattern of linkage disequilibrium across the region. Our study has generated a detailed map of genetic variation across the region, which should be useful for choosing SNPs for fine mapping of association signals in 8q24 and investigations of the functional consequences of select common variants
    corecore