198 research outputs found
An Intact Kidney Slice Model to Investigate Vasa Recta Properties and Function in situ
Background: Medullary blood flow is via vasa recta capillaries, which possess contractile pericytes. In vitro studies using isolated descending vasa recta show that pericytes can constrict/dilate descending vasa recta when vasoactive substances are present. We describe a live kidney slice model in which pericyte-mediated vasa recta constriction/dilation can be visualized in situ. Methods: Confocal microscopy was used to image calcein, propidium iodide and Hoechst labelling in ‘live’ kidney slices, to determine tubular and vascular cell viability and morphology. DIC video-imaging of live kidney slices was employed to investigate pericyte-mediated real-time changes in vasa recta diameter. Results: Pericytes were identified on vasa recta and their morphology and density were characterized in the medulla. Pericyte-mediated changes in vasa recta diameter (10–30%) were evoked in response to bath application of vasoactive agents (norepinephrine, endothelin-1, angiotensin-II and prostaglandin E2) or by manipulating endogenous vasoactive signalling pathways (using tyramine, L-NAME, a cyclo-oxygenase (COX-1) inhibitor indomethacin, and ATP release). Conclusions: The live kidney slice model is a valid complementary technique for investigating vasa recta function in situ and the role of pericytes as regulators of vasa recta diameter. This technique may also be useful in exploring the role of tubulovascular crosstalk in regulation of medullary blood flow
Hot embossing for fabrication of a microfluidic 3D cell culture
Clinically relevant studies of cell function in vitro require a physiologically-representative microenvironment possessing aspects such as a 3D extracellular matrix (ECM) and controlled biochemical and biophysical parameters. A polydimethylsiloxane (PDMS) microfluidic system with a 3D collagen gel has previously served for analysis of factors inducing different responses of cells in a 3D microenvironment under controlled biochemical and biophysical parameters. In the present study, applying the known commercially-viable manufacturing methods to a cyclic olefin copolymer (COC) material resulted in a microfluidic device with enhanced 3D gel capabilities, controlled surface properties, and improved potential to serve high-volume applications. Hot embossing and roller lamination molded and sealed the microfluidic device. A combination of oxygen plasma and thermal treatments enhanced the sealing, ensured proper placement of the 3D gel, and created controlled and stable surface properties within the device. Culture of cells in the new device indicated no adverse effects of the COC material or processing as compared to previous PDMS devices. The results demonstrate a methodology to transition microfludic devices for 3D cell culture from scientific research to high-volume applications with broad clinical impact.National Cancer Institute (U.S.) (award R21CA140096)Charles Stark Draper Laboratory (IR&D Grant
Robotic-assisted laparoscopic prostatectomy
Prostate cancer remains a significant health problem worldwide and is the second highest cause of cancer-related death in men. While there is uncertainty over which men will benefit from radical treatment, considerable efforts are being made to reduce treatment related side-effects and in optimising outcomes. This article reviews the development and introduction of robotic-assisted laparoscopic radical prostatectomy (RALP), the results to date, and the possible future directions of RALP
Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation
A myriad of mechanisms have been suggested to account for the full richness of visual cortical plasticity. We found that visual cortex lacking Arc is impervious to the effects of deprivation or experience. Using intrinsic signal imaging and chronic visually evoked potential recordings, we found that Arc−/− mice did not exhibit depression of deprived-eye responses or a shift in ocular dominance after brief monocular deprivation. Extended deprivation also failed to elicit a shift in ocular dominance or open-eye potentiation. Moreover, Arc−/− mice lacked stimulus-selective response potentiation. Although Arc−/− mice exhibited normal visual acuity, baseline ocular dominance was abnormal and resembled that observed after dark-rearing. These data suggest that Arc is required for the experience-dependent processes that normally establish and modify synaptic connections in visual cortex.Howard Hughes Medical InstituteNational Science Foundation (U.S.
Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells
Although neurons are known to exhibit a broad array of intrinsic properties that impact critically on the computations they perform, very few studies have quantified such biophysical diversity and its functional consequences. Using in vivo and in vitro whole-cell recordings here we show that mitral cells are extremely heterogeneous in their expression of a rebound depolarization (sag) at hyperpolarized potentials that is mediated by a ZD7288-sensitive current with properties typical of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. The variability in sag expression reflects a functionally diverse population of mitral cells. For example, those cells with large amplitude sag exhibit more membrane noise, a lower rheobase and fire action potentials more regularly than cells where sag is absent. Thus, cell-to-cell variability in sag potential amplitude reflects diversity in the integrative properties of mitral cells that ensures a broad dynamic range for odor representation across these principal neurons
Recommended from our members
Androgen Receptor Variants Mediate DNA Repair after Prostate Cancer Irradiation.
In prostate cancer, androgen deprivation therapy (ADT) enhances the cytotoxic effects of radiotherapy. This effect is associated with weakening of the DNA damage response (DDR) normally supported by the androgen receptor. As a significant number of patients will fail combined ADT and radiotherapy, we hypothesized that DDR may be driven by androgen receptor splice variants (ARV) induced by ADT. Investigating this hypothesis, we found that ARVs increase the clonogenic survival of prostate cancer cells after irradiation in an ADT-independent manner. Notably, prostate cancer cell irradiation triggers binding of ARV to the catalytic subunit of the critical DNA repair kinase DNA-PK. Pharmacologic inhibition of DNA-PKc blocked this interaction, increased DNA damage, and elevated prostate cancer cell death after irradiation. Our findings provide a mechanistic rationale for therapeutic targeting of DNA-PK in the context of combined ADT and radiotherapy as a strategy to radiosensitize clinically localized prostate cancer. Cancer Res; 77(18); 4745-54. ©2017 AACR
The association between genetic variants in hMLH1 and hMSH2 and the development of sporadic colorectal cancer in the Danish population
<p>Abstract</p> <p>Background</p> <p>Mutations in the mismatch repair genes <it>hMLH1 </it>and <it>hMSH2 </it>predispose to hereditary non-polyposis colorectal cancer (HNPCC). Genetic screening of more than 350 Danish patients with colorectal cancer (CRC) has led to the identification of several new genetic variants (e.g. missense, silent and non-coding) in <it>hMLH1 </it>and <it>hMSH2</it>. The aim of the present study was to investigate the frequency of these variants in <it>hMLH1 </it>and <it>hMSH2 </it>in Danish patients with sporadic colorectal cancer and in the healthy background population. The purpose was to reveal if any of the common variants lead to increased susceptibility to colorectal cancer.</p> <p>Methods</p> <p>Associations between genetic variants in <it>hMLH1 </it>and <it>hMSH2 </it>and sporadic colorectal cancer were evaluated using a case-cohort design. The genotyping was performed on DNA isolated from blood from the 380 cases with sporadic colorectal cancer and a sub-cohort of 770 individuals. The DNA samples were analyzed using Single Base Extension (SBE) Tag-arrays. A Bonferroni corrected Fisher exact test was used to test for association between the genotypes of each variant and colorectal cancer. Linkage disequilibrium (LD) was investigated using HaploView (v3.31).</p> <p>Results</p> <p>Heterozygous and homozygous changes were detected in 13 of 35 analyzed variants. Two variants showed a borderline association with colorectal cancer, whereas the remaining variants demonstrated no association. Furthermore, the genomic regions covering <it>hMLH1 </it>and <it>hMSH2 </it>displayed high linkage disequilibrium in the Danish population. Twenty-two variants were neither detected in the cases with sporadic colorectal cancer nor in the sub-cohort. Some of these rare variants have been classified either as pathogenic mutations or as neutral variants in other populations and some are unclassified Danish variants.</p> <p>Conclusion</p> <p>None of the variants in <it>hMLH1 </it>and <it>hMSH2 </it>analyzed in the present study were highly associated with colorectal cancer in the Danish population. High linkage disequilibrium in the genomic regions covering <it>hMLH1 </it>and <it>hMSH2</it>, indicate that common genetic variants in the two genes in general are not involved in the development of sporadic colorectal cancer. Nevertheless, some of the rare unclassified variants in <it>hMLH1 </it>and <it>hMSH2 </it>might be involved in the development of colorectal cancer in the families where they were originally identified.</p
Recommended from our members
The neurogenic potential of astrocytes is regulated by inflammatory signals
Although the adult brain contains neural stem cells (NSCs) that generate new neurons throughout life, these astrocyte-like populations are restricted to two discrete niches. Despite their terminally differentiated phenotype, adult parenchymal astrocytes can re-acquire NSC-like characteristics following injury, and as such, these 'reactive' astrocytes offer an alternative source of cells for central nervous system (CNS) repair following injury or disease. At present, the mechanisms that regulate the potential of different types of astrocytes are poorly understood. We used in vitro and ex vivo astrocytes to identify candidate pathways important for regulation of astrocyte potential. Using in vitro neural progenitor cell (NPC)-derived astrocytes, we found that exposure of more lineage-restricted astrocytes to either tumor necrosis factor alpha (TNF-α) (via nuclear factor-κB (NFκB)) or the bone morphogenetic protein (BMP) inhibitor, noggin, led to re-acquisition of NPC properties accompanied by transcriptomic and epigenetic changes consistent with a more neurogenic, NPC-like state. Comparative analyses of microarray data from in vitro-derived and ex vivo postnatal parenchymal astrocytes identified several common pathways and upstream regulators associated with inflammation (including transforming growth factor (TGF)-β1 and peroxisome proliferator-activated receptor gamma (PPARγ)) and cell cycle control (including TP53) as candidate regulators of astrocyte phenotype and potential. We propose that inflammatory signalling may control the normal, progressive restriction in potential of differentiating astrocytes as well as under reactive conditions and represent future targets for therapies to harness the latent neurogenic capacity of parenchymal astrocytes
Under-Five Mortality in High Focus States in India: A District Level Geospatial Analysis
<div><h3>Background</h3><p>This paper examines if, when controlling for biophysical and geographical variables (including rainfall, productivity of agricultural lands, topography/temperature, and market access through road networks), socioeconomic and health care indicators help to explain variations in the under-five mortality rate across districts from nine high focus states in India. The literature on this subject is inconclusive because the survey data, upon which most studies of child mortality rely, rarely include variables that measure these factors. This paper introduces these variables into an analysis of 284 districts from nine high focus states in India.</p> <h3>Methodology/Principal Findings</h3><p>Information on the mortality indicator was accessed from the recently conducted Annual Health Survey of 2011 and other socioeconomic and geographic variables from Census 2011, District Level Household and Facility Survey (2007–08), Department of Economics and Statistics Divisions of the concerned states. Displaying high spatial dependence (spatial autocorrelation) in the mortality indicator (outcome variable) and its possible predictors used in the analysis, the paper uses the Spatial-Error Model in an effort to negate or reduce the spatial dependence in model parameters. The results evince that the coverage gap index (a mixed indicator of district wise coverage of reproductive and child health services), female literacy, urbanization, economic status, the number of newborn care provided in Primary Health Centers in the district transpired as significant correlates of under-five mortality in the nine high focus states in India. The study identifies three clusters with high under-five mortality rate including 30 districts, and advocates urgent attention.</p> <h3>Conclusion</h3><p>Even after controlling the possible biophysical and geographical variables, the study reveals that the health program initiatives have a major role to play in reducing under-five mortality rate in the high focus states in India.</p> </div
- …