215 research outputs found

    Blind extraction of an exoplanetary spectrum through Independent Component Analysis

    Full text link
    Blind-source separation techniques are used to extract the transmission spectrum of the hot-Jupiter HD189733b recorded by the Hubble/NICMOS instrument. Such a 'blind' analysis of the data is based on the concept of independent component analysis. The de-trending of Hubble/NICMOS data using the sole assumption that nongaussian systematic noise is statistically independent from the desired light-curve signals is presented. By not assuming any prior, nor auxiliary information but the data themselves, it is shown that spectroscopic errors only about 10 - 30% larger than parametric methods can be obtained for 11 spectral bins with bin sizes of ~0.09 microns. This represents a reasonable trade-off between a higher degree of objectivity for the non-parametric methods and smaller standard errors for the parametric de-trending. Results are discussed in the light of previous analyses published in the literature. The fact that three very different analysis techniques yield comparable spectra is a strong indication of the stability of these results.Comment: ApJ accepte

    A silicate disk in the heart of the Ant

    Full text link
    We aim at getting high spatial resolution information on the dusty core of bipolar planetary nebulae to directly constrain the shaping process. Methods: We present observations of the dusty core of the extreme bipolar planetary nebula Menzel 3 (Mz 3, Hen 2-154, the Ant) taken with the mid-infrared interferometer MIDI/VLTI and the adaptive optics NACO/VLT. The core of Mz 3 is clearly resolved with MIDI in the interferometric mode, whereas it is unresolved from the Ks to the N bands with single dish 8.2 m observations on a scale ranging from 60 to 250 mas. A striking dependence of the dust core size with the PA angle of the baselines is observed, that is highly suggestive of an edge-on disk whose major axis is perpendicular to the axis of the bipolar lobes. The MIDI spectrum and the visibilities of Mz 3 exhibit a clear signature of amorphous silicate, in contrast to the signatures of crystalline silicates detected in binary post-AGB systems, suggesting that the disk might be relatively young. We used radiative-transfer Monte Carlo simulations of a passive disk to constrain its geometrical and physical parameters. Its inclination (74 degrees ±\pm 3 degrees) and position angle (5 degrees ±\pm 5 degrees) are in accordance with the values derived from the study of the lobes. The inner radius is 9±\pm 1 AU and the disk is relatively flat. The dust mass stored in the disk, estimated as 1 x 10-5Msun, represents only a small fraction of the dust mass found in the lobes and might be a kind of relic of an essentially polar ejection process

    IRAS\,11472-0800: an extremely depleted pulsating binary post-AGB star

    Full text link
    We focus here on one particular and poorly studied object, IRAS11472-0800. It is a highly evolved post-Asymptotic Giant Branch (post-AGB) star of spectral type F, with a large infrared excess produced by thermal emission of circumstellar dust. We deploy a multi-wavelength study which includes the analyses of optical and IR spectra as well as a variability study based on photometric and spectroscopic time-series. The spectral energy distribution (SED) properties as well as the highly processed silicate N-band emission show that the dust in IRAS11472-0800 is likely trapped in a stable disc. The energetics of the SED and the colour variability show that our viewing angle is close to edge-on and that the optical flux is dominated by scattered light. With photospheric abundances of [Fe/H] = -2.7 and [Sc/H]=-4.2, we discovered that IRAS11472-0800 is one of the most chemically-depleted objects known to date. Moreover, IRAS11472-0800 is a pulsating star with a period of 31.16 days and a peak-to-peak amplitude of 0.6 mag in V. The radial velocity variability is strongly influenced by the pulsations, but the significant cycle-to-cycle variability is systematic on a longer time scale, which we interpret as evidence for binary motion. We conclude that IRAS11472-0800 is a pulsating binary star surrounded by a circumbinary disc. The line-of-sight towards the object lies close the the orbital plane making that the optical light is dominated by scattered light. IRAS11472-0800 is one of the most chemically-depleted objects known so far and links the dusty RV\,Tauri stars to the non-pulsating class of strongly depleted objects.Comment: 12 pages, 14 figures Accepted for publication in A&A Main Journa

    On the Origins of the High-Latitude H-alpha Background

    Full text link
    The diffuse high-latitude H-alpha background is widely believed to be predominantly the result of in-situ recombination of ionized hydrogen in the warm interstellar medium of the Galaxy. Instead, we show that both a substantial fraction of the diffuse high-latitude H-alpha intensity in regions dominated by Galactic cirrus dust and much of the variance in the high-latitude H-alpha background are the result of scattering by interstellar dust of H-alpha photons originating elsewhere in the Galaxy. We provide an empirical relation, which relates the expected scattered H-alpha intensity to the IRAS 100um diffuse background intensity, applicable to about 81% of the entire sky. The assumption commonly made in reductions of CMB observations, namely that the observed all-sky map of diffuse H-alpha light is a suitable template for Galactic free-free foreground emission, is found to be in need of reexamination.Comment: 26 pages, 5 figures, Accepted for publication in Ap

    VLTI observations of the dust geometry around R Coronae Borealis stars

    Get PDF
    We are investigating the formation and evolution of dust around the hydrogen-deficient supergiants known as R Coronae Borealis (RCB) stars. We aim to determine the connection between the probable merger past of these stars and their current dust-production activities. We carried out high-angular resolution interferometric observations of three RCB stars, namely RY Sgr, V CrA, and V854 Cen with the mid-IR interferometer, MIDI on the VLTI, using two telescope pairs. The baselines ranged from 30 to 60 m, allowing us to probe the dusty environment at very small spatial scales (~ 50 mas or 400 stellar radii). The observations of the RCB star dust environments were interpreted using both geometrical models and one-dimensional radiative transfer codes. From our analysis we find that asymmetric circumstellar material is apparent in RY Sgr, may also exist in V CrA, and is possible for V854 Cen. Overall, we find that our observations are consistent with dust forming in clumps ejected randomly around the RCB star so that over time they create a spherically symmetric distribution of dust. However, we conclude that the determination of whether there is a preferred plane of dust ejection must wait until a time series of observations are obtained.Comment: Accepted for publication in MNRAS; 14 pages, 10 figures, 6 table

    Vibrotactile pedals : provision of haptic feedback to support economical driving

    Get PDF
    The use of haptic feedback is currently an underused modality in the driving environment, especially with respect to vehicle manufacturers. This exploratory study evaluates the effects of a vibrotactile (or haptic) accelerator pedal on car driving performance and perceived workload using a driving simulator. A stimulus was triggered when the driver exceeded a 50% throttle threshold, past which is deemed excessive for economical driving. Results showed significant decreases in mean acceleration values, and maximum and excess throttle use when the haptic pedal was active as compared to a baseline condition. As well as the positive changes to driver behaviour, subjective workload decreased when driving with the haptic pedal as compared to when drivers were simply asked to drive economically. The literature suggests that the haptic processing channel offers a largely untapped resource in the driving environment, and could provide information without overloading the other attentional resource pools used in driving

    Water in HD 209458b's atmosphere from 3.6 - 8 microns IRAC photometric observations in primary transit

    Get PDF
    The hot Jupiter HD 209458b was observed during primary transit at 3.6, 4.5, 5.8 and 8.0 microns using the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. We detail here the procedures we adopted to correct for the systematic trends present in the IRAC data. The light curves were fitted including limb darkening effects and fitted using Markov Chain Monte Carlo and prayer-bead Monte Carlo techniques, finding almost identical results. The final depth measurements obtained by a combined Markov Chain Monte Carlo fit are at 3.6 microns, 1.469 +- 0.013 % and 1.448 +- 0.013 %; at 4.5 microns, 1.478 +- 0.017 % ; at 5.8 microns, 1.549 +- 0.015 % and at 8.0 microns 1.535 +- 0.011 %. Our results clearly indicate the presence of water in the planetary atmosphere. Our broad band photometric measurements with IRAC prevent us from determining the additional presence of other other molecules such as CO, CO2 and methane for which spectroscopy is needed. While water vapour with a mixing ratio of 10^-4-10^-3 combined with thermal profiles retrieved from the day-side may provide a very good fit to our observations, this data set alone is unable to resolve completely the degeneracy between water abundance and atmospheric thermal profile.Comment: 14 pages, 6 tables, 10 figures, Accepted for publication in MNRA

    Time resolved spectroscopy of BD+46 442: gas streams and jet creation in a newly discovered evolved binary with a disk

    Full text link
    Previous studies have shown that many post-AGB stars with dusty disks are associated with single-lined binary stars. To verify the binarity hypothesis on a larger sample, we started a high-resolution spectral monitoring of about 40 field giants, whose binarity was suspected based on either a light curve, an infrared excess, or a peculiar chemical composition. Here we report on the discovery of the periodic RV variations in BD+46 442, a high-latitude F giant with a disk. We interpret the variations due to the motion around a faint companion, and deduce the following orbital parameters: Porb = 140.77 d, e = 0.083, asini=0.31 AU. We find it to be a moderately metal-poor star ([M/H]=-0.7) without a strong depletion pattern in the photospheric abundances. Interestingly, many lines show periodic changes with the orbital phase: Halpha switches between a double-peak emission and a PCyg-like profiles, while strong metal lines appear split during the maximum redshift. Similar effects are likely visible in the spectra of other post-AGB binaries, but their regularity is not always realized due to sporadic observations. We propose that these features result from an ongoing mass transfer from the evolved giant to the companion. In particular, the blue-shifted absorption in Halpha, which occurs only at superior conjunction, may result from a jet originating in the accretion disk around the companion and seen in absorption towards the luminous primary.Comment: 16 pages, accepted in A&

    Probing the extreme planetary atmosphere of WASP-12b

    Get PDF
    We report near-infrared measurements of the terminator region transmission spectrum and dayside emission spectrum of the exoplanet WASP-12b obtained using the HST WFC3 instrument. The disk-average dayside brightness temperature averages about 2900 K, peaking to 3200 K around 1.46 microns. We modeled a range of atmospheric cases for both the emission and transmission spectrum and confirm the recent finding by Crossfield et al. (2012b) that there is no evidence for C/O >1 in the atmosphere of WASP-12b. Assuming a physically plausible atmosphere, we find evidence that the presence of a number of molecules is consistent with the data, but the justification for inclusion of these opacity sources based on the Bayesian Information Criterion (BIC) is marginal. We also find the near-infrared primary eclipse light curve is consistent with small amounts of prolate distortion. As part of the calibration effort for these data, we conducted a detailed study of instrument systematics using 65 orbits of WFC3-IR grims observations. The instrument systematics are dominated by detector-related affects, which vary significantly depending on the detector readout mode. The 256x256 subarray observations of WASP 12 produced spectral measurements within 15% of the photon-noise limit using a simple calibration approach. Residual systematics are estimated to be less than 70 parts per million.Comment: Accepted for publication in Icaru
    • 

    corecore