4 research outputs found
Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states
The carrier-induced refractive index in quantum dot (QD) structures due to optical transitions from QD levels to continuum states is considered. It is shown that, for large photon energies, the refractive index change is given asymptotically by the Drude formula. Calculations of the linewidth enhancement factor, alpha, show that alphasimilar to1 due to this contribution to the total refractive index. Furthermore, for highly localized QD states, the absorption coefficient at the photon energies similar to0.8-1.0 eV due to these transitions can be on the order of 10(3) m(-1). (C) 2004 American Institute of Physics. (DOI: 10.1063/1.1639933
Superfluid toroidal currents in atomic condensates
The dynamics of toroidal condensates in the presence of condensate flow and
dipole perturbation have been investigated. The Bogoliubov spectrum of
condensate is calculated for an oblate torus using a discrete-variable
representation and a spectral method to high accuracy. The transition from
spheroidal to toroidal geometry of the trap displaces the energy levels into
narrow bands. The lowest-order acoustic modes are quantized with the dispersion
relation with . A condensate
with toroidal current splits the co-rotating and
counter-rotating pair by the amount: . Radial dipole excitations are the lowest energy dissipation modes.
For highly occupied condensates the nonlinearity creates an asymmetric mix of
dipole circulation and nonlinear shifts in the spectrum of excitations so that
the center of mass circulates around the axis of symmetry of the trap. We
outline an experimental method to study these excitations.Comment: 8 pages, 8 figure
Gyroscopic motion of superfluid trapped atomic condensates
The gyroscopic motion of a trapped Bose gas containing a vortex is studied.
We model the system as a classical top, as a superposition of coherent
hydrodynamic states, by solution of the Bogoliubov equations, and by
integration of the time-dependent Gross-Pitaevskii equation. The frequency
spectrum of Bogoliubov excitations, including quantum frequency shifts, is
calculated and the quantal precession frequency is found to be consistent with
experimental results, though a small discrepancy exists. The superfluid
precession is found to be well described by the classical and hydrodynamic
models. However the frequency shifts and helical oscillations associated with
vortex bending and twisting require a quantal treatment. In gyroscopic
precession, the vortex excitation modes are the dominant features
giving a vortex kink or bend, while the is found to be the dominant
Kelvin wave associated with vortex twisting.Comment: 18 pages, 7 figures, 1 tabl
Collective excitations of trapped Bose condensates in the energy and time domains
A time-dependent method for calculating the collective excitation frequencies
and densities of a trapped, inhomogeneous Bose-Einstein condensate with
circulation is presented. The results are compared with time-independent
solutions of the Bogoliubov-deGennes equations. The method is based on
time-dependent linear-response theory combined with spectral analysis of
moments of the excitation modes of interest. The technique is straightforward
to apply, is extremely efficient in our implementation with parallel FFT
methods, and produces highly accurate results. The method is suitable for
general trap geometries, condensate flows and condensates permeated with vortex
structures.Comment: 6 pages, 3 figures small typos fixe