4 research outputs found

    Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states

    Get PDF
    The carrier-induced refractive index in quantum dot (QD) structures due to optical transitions from QD levels to continuum states is considered. It is shown that, for large photon energies, the refractive index change is given asymptotically by the Drude formula. Calculations of the linewidth enhancement factor, alpha, show that alphasimilar to1 due to this contribution to the total refractive index. Furthermore, for highly localized QD states, the absorption coefficient at the photon energies similar to0.8-1.0 eV due to these transitions can be on the order of 10(3) m(-1). (C) 2004 American Institute of Physics. (DOI: 10.1063/1.1639933

    Superfluid toroidal currents in atomic condensates

    Get PDF
    The dynamics of toroidal condensates in the presence of condensate flow and dipole perturbation have been investigated. The Bogoliubov spectrum of condensate is calculated for an oblate torus using a discrete-variable representation and a spectral method to high accuracy. The transition from spheroidal to toroidal geometry of the trap displaces the energy levels into narrow bands. The lowest-order acoustic modes are quantized with the dispersion relation ωmωs\omega \sim |m| \omega_s with m=0,±1,±2,...m=0,\pm 1,\pm 2, .... A condensate with toroidal current κ\kappa splits the m|m| co-rotating and counter-rotating pair by the amount: ΔE2m2κ<r2>\Delta E \approx 2 |m|\hbar^2 \kappa < r^{-2}>. Radial dipole excitations are the lowest energy dissipation modes. For highly occupied condensates the nonlinearity creates an asymmetric mix of dipole circulation and nonlinear shifts in the spectrum of excitations so that the center of mass circulates around the axis of symmetry of the trap. We outline an experimental method to study these excitations.Comment: 8 pages, 8 figure

    Gyroscopic motion of superfluid trapped atomic condensates

    Full text link
    The gyroscopic motion of a trapped Bose gas containing a vortex is studied. We model the system as a classical top, as a superposition of coherent hydrodynamic states, by solution of the Bogoliubov equations, and by integration of the time-dependent Gross-Pitaevskii equation. The frequency spectrum of Bogoliubov excitations, including quantum frequency shifts, is calculated and the quantal precession frequency is found to be consistent with experimental results, though a small discrepancy exists. The superfluid precession is found to be well described by the classical and hydrodynamic models. However the frequency shifts and helical oscillations associated with vortex bending and twisting require a quantal treatment. In gyroscopic precession, the vortex excitation modes m=±1m=\pm 1 are the dominant features giving a vortex kink or bend, while the m=+2m=+2 is found to be the dominant Kelvin wave associated with vortex twisting.Comment: 18 pages, 7 figures, 1 tabl

    Collective excitations of trapped Bose condensates in the energy and time domains

    Full text link
    A time-dependent method for calculating the collective excitation frequencies and densities of a trapped, inhomogeneous Bose-Einstein condensate with circulation is presented. The results are compared with time-independent solutions of the Bogoliubov-deGennes equations. The method is based on time-dependent linear-response theory combined with spectral analysis of moments of the excitation modes of interest. The technique is straightforward to apply, is extremely efficient in our implementation with parallel FFT methods, and produces highly accurate results. The method is suitable for general trap geometries, condensate flows and condensates permeated with vortex structures.Comment: 6 pages, 3 figures small typos fixe
    corecore