136 research outputs found

    Casimir interaction between two concentric cylinders: exact versus semiclassical results

    Get PDF
    The Casimir interaction between two perfectly conducting, infinite, concentric cylinders is computed using a semiclassical approximation that takes into account families of classical periodic orbits that reflect off both cylinders. It is then compared with the exact result obtained by the mode-by-mode summation technique. We analyze the validity of the semiclassical approximation and show that it improves the results obtained through the proximity theorem.Comment: 28 pages, 5 figures include

    Capillary pressure of van der Waals liquid nanodrops

    Full text link
    The dependence of the surface tension on a nanodrop radius is important for the new-phase formation process. It is demonstrated that the famous Tolman formula is not unique and the size-dependence of the surface tension can distinct for different systems. The analysis is based on a relationship between the surface tension and disjoining pressure in nanodrops. It is shown that the van der Waals interactions do not affect the new-phase formation thermodynamics since the effect of the disjoining pressure and size-dependent component of the surface tension cancel each other.Comment: The paper is dedicated to the 80th anniversary of A.I. Rusano

    Influence of Humidity on Microtribology of Vertically Aligned Carbon Nanotube Film

    Get PDF
    The aim of this study is to probe the influence of water vapor environment on the microtribological properties of a forestlike vertically aligned carbon nanotube (VACNT) film, deposited on a silicon (001) substrate by chemical vapor deposition. Tribological experiments were performed using a gold tip under relative humidity varying from 0 to 100%. Very low adhesion forces and high friction coefficients of 0.6 to 1.3 resulted. The adhesion and friction forces were independent of humidity, due probably to the high hydrophobicity of VACNT. These tribological characteristics were compared to those of a diamond like carbon (DLC) sample

    Lattice Boltzmann for Binary Fluids with Suspended Colloids

    Full text link
    A new description of the binary fluid problem via the lattice Boltzmann method is presented which highlights the use of the moments in constructing two equilibrium distribution functions. This offers a number of benefits, including better isotropy, and a more natural route to the inclusion of multiple relaxation times for the binary fluid problem. In addition, the implementation of solid colloidal particles suspended in the binary mixture is addressed, which extends the solid-fluid boundary conditions for mass and momentum to include a single conserved compositional order parameter. A number of simple benchmark problems involving a single particle at or near a fluid-fluid interface are undertaken and show good agreement with available theoretical or numerical results.Comment: 10 pages, 4 figures, ICMMES 200

    Stages of steady diffusion growth of a gas bubble in strongly supersaturated gas-liquid solution

    Full text link
    Gas bubble growth as a result of diffusion flux of dissolved gas molecules from the surrounding supersaturated solution to the bubble surface is studied. The condition of the flux steadiness is revealed. A limitation from below on the bubble radius is considered. Its fulfillment guarantees the smallness of fluctuation influence on bubble growth and irreversibility of this process. Under the conditions of steadiness of diffusion flux three stages of bubble growth are marked out. With account for Laplace forces in the bubble intervals of bubble size change and time intervals of these stages are found. The trend of the third stage towards the self-similar regime of the bubble growth, when Laplace forces in the bubble are completely neglected, is described analytically.Comment: 22 page

    Effective interactions between inclusions in complex fluids driven out of equilibrium

    Full text link
    The concept of fluctuation-induced effective interactions is extended to systems driven out of equilibrium. We compute the forces experienced by macroscopic objects immersed in a soft material driven by external shaking sources. We show that, in contrast with equilibrium Casimir forces induced by thermal fluctuations, their sign, range and amplitude depends on specifics of the shaking and can thus be tuned. We also comment upon the dispersion of these shaking-induced forces, and discuss their potential application to phase ordering in soft-materials.Comment: 10 pages, 8 figures, to appear in PR

    Nanofriction mechanisms derived from the dependence of friction on load and sliding velocity from air to UHV on hydrophilic silicon

    Full text link
    This paper examines friction as a function of the sliding velocity and applied normal load from air to UHV in a scanning force microscope (SFM) experiment in which a sharp silicon tip slides against a flat Si(100) sample. Under ambient conditions, both surfaces are covered by a native oxide, which is hydrophilic. During pump-down in the vacuum chamber housing the SFM, the behavior of friction as a function of the applied normal load and the sliding velocity undergoes a change. By analyzing these changes it is possible to identify three distinct friction regimes with corresponding contact properties: (a) friction dominated by the additional normal forces induced by capillarity due to the presence of thick water films, (b) higher drag force from ordering effects present in thin water layers and (c) low friction due to direct solid-solid contact for the sample with the counterbody. Depending on environmental conditions and the applied normal load, all three mechanisms may be present at one time. Their individual contributions can be identified by investigating the dependence of friction on the applied normal load as well as on the sliding velocity in different pressure regimes, thus providing information about nanoscale friction mechanisms

    Modeling the break-up of nano-particle clusters in aluminum- and magnesium-based metal matrix nano-composites

    Get PDF
    Aluminum- and magnesium-based metal matrix nano-composites with ceramic nano-reinforcements promise low weight with high durability and superior strength, desirable properties in aerospace, automobile, and other applications. However, nano-particle agglomerations lead to adverse effects on final properties: large-size clusters no longer act as dislocation anchors, but instead become defects; the resulting particle distribution will be uneven, leading to inconsistent properties. To prevent agglomeration and to break-up clusters, ultrasonic processing is used via an immersed sonotrode, or alternatively via electromagnetic vibration. A study of the interaction forces holding the nano-particles together shows that the choice of adhesion model significantly affects estimates of break-up force and that simple Stokes drag due to stirring is insufficient to break-up the clusters. The complex interaction of flow and co-joint particles under a high frequency external field (ultrasonic, electromagnetic) is addressed in detail using a discrete-element method code to demonstrate the effect of these fields on de-agglomeration

    Three-body interactions in colloidal systems

    Full text link
    We present the first direct measurement of three-body interactions in a colloidal system comprised of three charged colloidal particles. Two of the particles have been confined by means of a scanned laser tweezers to a line-shaped optical trap where they diffused due to thermal fluctuations. Upon the approach of a third particle, attractive three-body interactions have been observed. The results are in qualitative agreement with additionally performed nonlinear Poissson-Boltzmann calculations, which also allow us to investigate the microionic density distributions in the neighborhood of the interacting colloidal particles

    Interaction and flocculation of spherical colloids wetted by a surface-induced corona of paranematic order

    Full text link
    Particles dispersed in a liquid crystal above the nematic-isotropic phase transition are wetted by a surface-induced corona of paranematic order. Such coronas give rise to pronounced two-particle interactions. In this article, we report details on the analytical and numerical study of these interactions published recently [Phys. Rev. Lett. 86, 3915 (2001)]. We especially demonstrate how for large particle separations the asymptotic form of a Yukawa potential arises. We show that the Yukawa potential is a surprisingly good description for the two-particle interactions down to distances of the order of the nematic coherence length. Based on this fact, we extend earlier studies on a temperature induced flocculation transition in electrostatically stabilized colloidal dispersions [Phys. Rev. E 61, 2831 (2000)]. We employ the Yukawa potential to establish a flocculation diagram for a much larger range of the electrostatic parameters, namely the surface charge density and the Debye screening length. As a new feature, a kinetically stabilized dispersion close to the nematic-isotropic phase transition is found.Comment: Revtex v4.0, 16 pages, 12 Postscript figures. Accepted for publication in Phys. Rev.
    corecore