306 research outputs found
Coronal Temperature Diagnostic Capability of the Hinode/X-Ray Telescope Based on Self-Consistent Calibration
The X-Ray Telescope (XRT) onboard the Hinode satellite is an X-ray imager
that observes the solar corona with unprecedentedly high angular resolution
(consistent with its 1" pixel size). XRT has nine X-ray analysis filters with
different temperature responses. One of the most significant scientific
features of this telescope is its capability of diagnosing coronal temperatures
from less than 1 MK to more than 10 MK, which has never been accomplished
before. To make full use of this capability, accurate calibration of the
coronal temperature response of XRT is indispensable and is presented in this
article. The effect of on-orbit contamination is also taken into account in the
calibration. On the basis of our calibration results, we review the
coronal-temperature-diagnostic capability of XRT
Signatures of Coronal Heating Mechanisms
Alfven waves created by sub-photospheric motions or by magnetic reconnection
in the low solar atmosphere seem good candidates for coronal heating. However,
the corona is also likely to be heated more directly by magnetic reconnection,
with dissipation taking place in current sheets. Distinguishing observationally
between these two heating mechanisms is an extremely difficult task. We perform
1.5-dimensional MHD simulations of a coronal loop subject to each type of
heating and derive observational quantities that may allow these to be
differentiated.Comment: To appear in "Magnetic Coupling between the Interior and the
Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and
Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200
EUV emission lines and diagnostics observed with Hinode/EIS
Quiet Sun and active region spectra from the Hinode/EIS instrument are
presented, and the strongest lines from different temperature regions
discussed. A list of emission lines recommended to be included in EIS
observation studies is presented based on analysis of blending and diagnostic
potential using the CHIANTI atomic database. In addition we identify the most
useful density diagnostics from the ions covered by EIS.Comment: 14 pages, 3 figures, submitted to PASJ Hinode first results issu
EUV Spectra of the Full Solar Disk: Analysis and Results of the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)
We analyze EUV spectra of the full solar disk from the Cosmic Hot
Interstellar Plasma Spectrometer (CHIPS) spanning a period of two years. The
observations were obtained via a fortuitous off-axis light path in the 140 --
270 Angstrom passband. The general appearance of the spectra remained
relatively stable over the two-year time period, but did show significant
variations of up to 25% between two sets of Fe lines that show peak emission at
1 MK and 2 MK. The variations occur at a measured period of 27.2 days and are
caused by regions of hotter and cooler plasma rotating into, and out of, the
field of view. The CHIANTI spectral code is employed to determine plasma
temperatures, densities, and emission measures. A set of five isothermal
plasmas fit the full disk spectra well. A 1 -- 2 MK plasma of Fe contributes
85% of the total emission in the CHIPS passband. The standard Differential
Emission Measures (DEMs) supplied with the CHIANTI package do not fit the CHIPS
spectra well as they over-predict emission at temperatures below log(T) = 6.0
and above log(T) = 6.3. The results are important for cross-calibrating TIMED,
SORCE, SOHO/EIT, and CDS/GIS, as well as the recently launched Solar Dynamics
Observatory.Comment: 27 Pages, 13 Figure
Coronal magnetic field measurement using loop oscillations observed by Hinode/EIS
We report the first spectroscopic detection of a kink MHD oscillation of a solar coronal structure by the Extreme-Ultraviolet Imaging Spectrometer (EIS) on the Japanese Hinode satellite. The detected oscillation has an amplitude of 1 kms−1 in the Doppler shift of the FeXII 195 Å spectral line (1.3 MK), and a period of 296 s. The unique combination of EIS’s spectroscopic and imaging abilities
enables us to measure simultaneously the mass density and length of the oscillating loop. This enables us to measure directly the magnitude of the local magnetic field, the fundamental coronal plasma parameter, as 39 ± 8 G, with unprecedented accuracy. This proof of concept makes EIS an exclusive instrument for the full scale implementation of the MHD coronal seismological technique
EIS/Hinode observations of Doppler flow seen through the 40 arcsec wide slit
The Extreme ultraviolet Imaging Spectrometer (EIS) on board Hinode is the
first solar telescope to obtain wide slit spectral images that can be used for
detecting Doppler flows in transition region and coronal lines on the Sun and
to relate them to their surrounding small scale dynamics. We select EIS lines
covering the temperature range 6x10^4 K to 2x10^6 K that give spectrally pure
images of the Sun with the 40 arcsec slit. In these images Doppler shifts are
seen as horizontal brightenings. Inside the image it is difficult to
distinguish shifts from horizontal structures but emission beyond the image
edge can be unambiguously identified as a line shift in several lines separated
from others on their blue or red side by more than the width of the
spectrometer slit (40 pixels). In the blue wing of He II, we find a large
number of events with properties (size and lifetime) similar to the
well-studied explosive events seen in the ultraviolet spectral range.
Comparison with X-Ray Telescope (XRT) images shows many Doppler shift events at
the footpoints of small X-ray loops. The most spectacular event observed showed
a strong blue shift in transition region and lower corona lines from a small
X-ray spot that lasted less than 7 min. The emission appears to be near a cool
coronal loop connecting an X-ray bright point to an adjacent region of quiet
Sun. The width of the emission implies a line-of-sight velocity of 220 km/s. In
addition, we show an example of an Fe XV shift with a velocity about 120 km/s,
coming from what looks like a narrow loop leg connecting a small X-ray
brightening to a larger region of X-ray emission.Comment: 12 pages, 8 figures, to be published in Solar Physic
An evaluation of possible mechanisms for anomalous resistivity in the solar corona
A wide variety of transient events in the solar corona seem to require
explanations that invoke fast reconnection. Theoretical models explaining fast
reconnection often rely on enhanced resistivity. We start with data derived
from observed reconnection rates in solar flares and seek to reconcile them
with the chaos-induced resistivity model of Numata & Yoshida (2002) and with
resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find
that the resistivities arising from either of these mechanisms, when localized
over lengthscales of the order of an ion skin depth, are capable of explaining
the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic
Plasmoid-Induced-Reconnection and Fractal Reconnection
As a key to undertanding the basic mechanism for fast reconnection in solar
flares, plasmoid-induced-reconnection and fractal reconnection are proposed and
examined. We first briefly summarize recent solar observations that give us
hints on the role of plasmoid (flux rope) ejections in flare energy release. We
then discuss the plasmoid-induced-reconnection model, which is an extention of
the classical two-ribbon-flare model which we refer to as the CSHKP model. An
essential ingredient of the new model is the formation and ejection of a
plasmoid which play an essential role in the storage of magnetic energy (by
inhibiting reconnection) and the induction of a strong inflow into reconnection
region. Using a simple analytical model, we show that the plasmoid ejection and
acceleration are closely coupled with the reconnection process, leading to a
nonlinear instability for the whole dynamics that determines the macroscopic
reconnection rate uniquely. Next we show that the current sheet tends to have a
fractal structure via the following process path: tearing, sheet thinning,
Sweet- Parker sheet, secondary tearing, further sheet thinning... These
processes occur repeatedly at smaller scales until a microscopic plasma scale
(either the ion Larmor radius or the ion inertial length) is reached where
anomalous resistivity or collisionless reconnection can occur. The current
sheet eventually has a fractal structure with many plasmoids (magnetic islands)
of different sizes. When these plasmoids are ejected out of the current sheets,
fast reconnection occurs at various different scales in a highly time dependent
manner. Finally, a scenario is presented for fast reconnection in the solar
corona on the basis of above plasmoid-induced-reconnection in a fractal current
sheet.Comment: 9 pages, 11 figures, with using eps.sty; Earth, Planets and Space in
press; ps-file is also available at
http://stesun8.stelab.nagoya-u.ac.jp/~tanuma/study/shibata2001
Observation of An Evolving Magnetic Flux Rope Prior To and During A Solar Eruption
Explosive energy release is a common phenomenon occurring in magnetized
plasma systems ranging from laboratories, Earth's magnetosphere, the solar
corona and astrophysical environments. Its physical explanation is usually
attributed to magnetic reconnection in a thin current sheet. Here we report the
important role of magnetic flux rope structure, a volumetric current channel,
in producing explosive events. The flux rope is observed as a hot channel prior
to and during a solar eruption from the Atmospheric Imaging Assembly (AIA)
telescope on board the Solar Dynamic Observatory (SDO). It initially appears as
a twisted and writhed sigmoidal structure with a temperature as high as 10 MK
and then transforms toward a semi-circular shape during a slow rise phase,
which is followed by fast acceleration and onset of a flare. The observations
suggest that the instability of the magnetic flux rope trigger the eruption,
thus making a major addition to the traditional magnetic-reconnection paradigm.Comment: 13 pages, 3 figure
- …