2 research outputs found

    Pearl millet genomic vulnerability to climate change in West Africa highlights the need for regional collaboration

    Get PDF
    Climate change is already affecting agro-ecosystems and threatening food security by reducing crop productivity and increasing harvest uncertainty. Mobilizing crop diversity could be an efficient way to mitigate its impact. We test this hypothesis in pearl millet, a nutritious staple cereal cultivated in arid and low-fertility soils in sub-Saharan Africa. We analyze the genomic diversity of 173 landraces collected in West Africa together with an extensive climate dataset composed of metrics of agronomic importance. Mapping the pearl millet genomic vulnerability at the 2050 horizon based on the current genomic-climate relationships, we identify the northern edge of the current areas of cultivation of both early and late flowering varieties as being the most vulnerable to climate change. We predict that the most vulnerable areas will benefit from using landraces that already grow in equivalent climate conditions today. However, such seed-exchange scenarios will require long distance and trans-frontier assisted migrations. Leveraging genetic diversity as a climate mitigation strategy in West Africa will thus require regional collaboration

    Abandonment of pearl millet cropping and homogenization of its diversity over a 40 year period in Senegal

    No full text
    Cultivated diversity is considered an insurance against major climatic variability. However, since the 1980s, several studies have shown that climate variability and agricultural changes may already have locally eroded crop genetic diversity. We studied pearl millet diversity in Senegal through a comparison of pearl millet landraces collected 40 years apart. We found that more than 20% of villages visited in 1976 had stopped growing pearl millet. Despite this, its overall genetic diversity has been maintained but differentiation between early- and late-flowering accessions has been reduced. We also found stronger crop-to-wild gene flow than wild-to-crop gene flow and that wild-to-crop gene flow was weaker in 2016 than in 1976. In conclusion, our results highlight genetic homogenization in Senegal. This homogenization within cultivated pearl millet and between wild and cultivated forms is a key factor in genetic erosion and it is often overlooked. Improved assessment and conservation strategies are needed to promote and conserve both wild and cultivated pearl millet diversity
    corecore