48 research outputs found

    Fabrication of binder-free ultrafine WC-6CO composites by coupled multi-physical fields activation technology

    Get PDF
    A novel sintering method, named as coupled multi-physical fields activation technology, has been introduced for the forming of various material powder systems. Compared with the conventional ones, this technique presents more advantages: lower sintering temperature, shorter forming time, and remarkable inhibition of the grains coarsening. In the study, the cylinders of Φ4.0mm×4.0mm had been formed with ultrafine WC-6Co powders. The relative properties of sintered WC-6Co cemented carbides, such as hardness and the microstructures, had been obtained. The study has shown that a relative density, 97.80%, of the formed samples, could been achieved when the case of temperature 850℃, heating rate 50℃/s, pressure 75MPa and Electro-heating loop 6 times, were used. More importantly, the circumscription for the growth of grain size of WC, attributed to the effect of electrical field, renders coupled multi-physical fields activation technology applicable for getting WC-6Co cemented carbides with fine grain size and good properties

    Template effect in TiN/AlN multilayered coatings from first principles

    Get PDF
    Multilayered TiN/AlN coatings find many technological applications where superhardness is suspected to be affected by AlN structures and template effect. Here, we demonstrate, by first-principles calculations on alternative adsorptions of Al and N atoms on Ti- and N-terminated TiN surfaces, that the preferred stacking sequences (i.e., having the largest adsorption energy) transform from fcc- to hcp- mode in first a few AlN layers. Using several analytic methods, we identify that for the T-terminated surface, the third added N layer is critical to inducing the structural transition of AlN, weakening the interaction between the second added Al and first added N atoms. The findings provide insight to the complicated template effects in TiN/AlN multilayered coatings, which are practically relevant for further improving property of multilayered coatings at the atomic scale

    Microstructure evolution and surface cleaning of Cu nanoparticles during micro-fields activated sintering technology

    Get PDF
    For the purpose of extensive utilization of powder metallurgy to micro/nano- fabrication of materials, the micro gear was prepared by a novel method, named as micro- forming fields activated sintering technology (Micro-FAST). Surface-cleaning of particles, especially during the initial stage of sintering, is a crucial issue for the densification mechanism. However, up to date, the mechanism of surface-cleaning is too complicated to be known. In this paper, the process of surface-cleaning of Micro-FAST was studied, employing the high resolution transmission electron microscopy (HRTEM) for observation of microstructure of micro-particles. According to the evolution of the microstructure, surface-cleaning is mainly ascribed to the effect of electro-thermal focusing. The process of surface-cleaning is achieved through rearrangement of grains, formation of vacancy, migration of vacancy and enhancement of electro-thermal focusing

    A new densification mechanism of copper powder sintered under an electrical field

    Get PDF
    A new sintering mechanism is revealed for copper powder sintered under the influence of an electrical field and a force field during the formation of microcomponents. Analysis of the microstructure and grain boundary evolution of the sintered samples showed that the disappearance of the interface at contact areas between particles is a continuous process which involves new grain formation and grain refinement during this innovative microsintering process. The densification process is therefore different from what is known in a conventional powder sintering process

    Spatial-temporal traffic modeling with a fusion graph reconstructed by tensor decomposition

    Full text link
    Accurate spatial-temporal traffic flow forecasting is essential for helping traffic managers to take control measures and drivers to choose the optimal travel routes. Recently, graph convolutional networks (GCNs) have been widely used in traffic flow prediction owing to their powerful ability to capture spatial-temporal dependencies. The design of the spatial-temporal graph adjacency matrix is a key to the success of GCNs, and it is still an open question. This paper proposes reconstructing the binary adjacency matrix via tensor decomposition, and a traffic flow forecasting method is proposed. First, we reformulate the spatial-temporal fusion graph adjacency matrix into a three-way adjacency tensor. Then, we reconstructed the adjacency tensor via Tucker decomposition, wherein more informative and global spatial-temporal dependencies are encoded. Finally, a Spatial-temporal Synchronous Graph Convolutional module for localized spatial-temporal correlations learning and a Dilated Convolution module for global correlations learning are assembled to aggregate and learn the comprehensive spatial-temporal dependencies of the road network. Experimental results on four open-access datasets demonstrate that the proposed model outperforms state-of-the-art approaches in terms of the prediction performance and computational cost.Comment: 11 pages, 8 figure

    Effects of sintering temperature on the densification of WC-6Co cemented carbides sintered by coupled multi-physical-fields activated technology

    Get PDF
    Sample parts with WC-6Co cemented carbides were manufactured successfully with a novel method called coupled multi-physical-fields (electric field, temperature field and force field) activated sintering technology, using a Gleeble-1500D thermal simulation machine. Effects of sintering temperature on the densification, microstructures and hardness of samples were investigated. It was found that densification of the samples was enhanced with the increase of the sintering temperature and a relative density of as high as 98.76% achieved when a sintering temperature of 1200 °C was used. The particle size of the WC in sintered samples increased from 1.837 μm to 2.897 μm when the temperature was increased from 1000 °C to 1200 °C, resulting in the decrease of the hardness from HRC 63.5 to HRC 61.7. The presented work shows that, potentially, coupled multi-physical-fields activated technology is able to produce hard alloys to meet the engineering applications

    Volatile Component Analysis of Michelia alba Leaves and Their Effect on Fumigation Activity and Worker Behavior of Solenopsis invicta

    Get PDF
    Volatile compounds from mashed (fresh, fallen, and dried) leaves ofMichelia alba were collected via solid-phase microextraction and werethen identified via gas chromatography-mass spectrometry. The resultsshowed that linalool was the dominant component in different leaves,together with caryophyllene, β-elemene, and selinene, the contents ofwhich vary across the samples. The fumigation bioassay results showedthat the volatiles from M. alba leaves exhibited insecticidal activity againstred imported fire ant workers, and the mortality of workers could reachup to 100% after the fallen leaves were treated for 16 h. Mashed freshleaves could effectively reduce the aggregation and drinking ability ofworkers. The volatile substances released from the mashed leaves mightkill the ants, or affect their behavior and weaken the activity by interferingtransmit information between ants. A comprehensive consideration ofthe economic and ecological value of M. alba shows that fallen leavesmight be a good resource to control red imported fire ant

    Carbon materials : structures, properties, synthesis and applications

    Get PDF
    As one of the most versatile elements, carbon materials occupy the most plentiful allotropies composed of pure or mixed hybridization orbitals of sp1/sp2/sp3. The design and synthesis of new carbon materials may be stimulated based on a deeper understanding of underlying structures and related properties. In this review, the initial early discoveries of carbon materials are examined based on their hybridization of orbitals. According to the type of hybridization, the discovered carbon materials are firstly classified and introduced in detail based on their crystal structures. Secondly, its physical and chemical properties, mainly including mechanical properties, optical properties and electronic properties, are reviewed. Thirdly, the existing methods of predicting carbon structure and synthesizing carbon materials are classified and summarized, and some typical carbon materials predicted or prepared are discussed respectively. Then, the main applications of newly synthesized carbon materials in the last two decades are classified and summarized, and the microstructure is linked with the macro properties and specific applications. Finally, the future research opportunities for carbon materials and their potential applications are prospected from the aspects of the gap between theoretical prediction and preparation, the current research hotspot of carbon materials and the incomplete application of carbon materials. It is the authors' intention for this review paper to serve not only as a valuable reference for research into carbon materials and related composites, but also as a guidance for novel materials design at the atomic level

    Role of Biotic and Abiotic Factors for Sustainable Cotton Production

    Get PDF
    Climate is changing globally nowadays because of extensive crucial human activities. This state along with stark in weather measures ultimately affecting the development and growth of crops due to various kinds of stressful field condition at the same time including biotic and abiotic stresses. Thus, various biotic factors including pathogens, weeds and pests and abiotic factors including temperature, humidity and drought etc. are involved in reduction of cotton yield due to which cotton production significantly reduced. Various biotic factors have direct effect on the cotton production and caused significant reduction in cotton crop yield estimated up to 10 to 30%, while as abiotic factors are even worse than biotic stresses and could cause 50% reduction. So, effective agronomic practices, optimal climate and integrated pest management leads to fruitful crop production to cover this yield gap. This chapter will be broadly useful to design projects aimed with inter and intra-disciplinary collaboration for sustainable cotton production

    Kinematic Design, Analysis and Simulation of a Hybrid Robot with Terrain and Aerial Locomotion Capability

    Get PDF
    Having only one type of locomotion mechanism limits the stability and locomotion capability of a mobile robot on irregular terrain surfaces. One of the possible solution to this is combining more than one locomotion mechanisms in the robot. In this paper, robotic platform composed of a quadruped module for terrain locomotion and quadrotor module for aerial locomotion is introduced. This design is inspired by the way which birds are using their wings and legs for stability in slopped and uneven surfaces. The main idea is to combine the two systems in such a way that the strengths of both subsystems are used, and the weakness of the either systems are covered. The ability of the robot to reach the target position quickly and to avoid large terrestrial obstacles by flying expands its application in various areas of search and rescue. The same platform can be used for detailed 3D mapping and aerial mapping which are very helpful in rescue operations. In particular, this paper presents kinematic design, analysis and simulation of such a robotic system. Simulation and verification of results are done using MATLAB
    corecore