9 research outputs found

    An extra-domiciliary method of delivering entomopathogenic fungus, Metharizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis

    Get PDF
    Fungal biopesticides have the potential to significantly reduce densities of malaria vectors as well as associated malaria transmission. In previous field trials, entomopathogenic fungus was delivered from within human dwellings, where its efficacy was limited by low infection rates of target mosquitoes, high costs of spraying fungus inside houses, and potential public health concerns associated with introducing fungal conidia inside houses. Here we have demonstrated that Metarhizium anisopliae IP 46, delivered within an extra-domiciliary odor-baited station (OBS), can infect and slowly-kill a high proportion of the wild adult malaria vector, Anopheles arabiensis which entered and exited the OBS. This study, carried out in rural Tanzania, showed that by using a concentration of 3.9 × 1010 conidia/m2, more than 95% of mosquitoes that flew in and out of the OBS died within 14 days post-exposure. At least 86% infection of mosquito cadavers was recorded with a significant reduction in the probability of daily survival of exposed An. arabiensis in both treatments tested: low quantity of conidia (eave baffles plus one cotton panel; HR = 2.65, P < 0.0001) and high quantity of conidia (eave baffles plus two cotton panels; HR = 2.32, P < 0.0001). We conclude that high infection rates of entomopathogenic fungi on wild malaria vectors and possibly significant disruption of malaria transmission can be achieved if the fungus is delivered using optimally located outdoor odor-baited stations

    Participatory development of practical, affordable, insecticide-treated mosquito proofing for a range of housing designs in rural southern Tanzania

    Get PDF
    Background: Insecticidal mosquito-proof netting screens could combine the best features of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), the two most important front line vector control interventions in Africa today, and also overcome the most important limitations of these methods. This study engaged members of a rural Tanzanian community in developing and evaluating simple, affordable and scalable procedures for installing readily available screening materials on eave gaps and windows of their own houses, and then treating those screens with a widely used IRS formulation of the organophosphate insecticide pirimiphos-methyl (PM). Methods: A cohort of 54 households recruited upon consent, following which the structural features and occupant demographics of their houses were surveyed. Indoor mosquito densities were surveyed longitudinally, for approximately 3 months before and over 5 months after participatory house modification and screening using locally available materials. Each house was randomly assigned to one of three study arms: (1) No screens installed until the end of the study (negative control), (2) untreated screens installed, and (3) screened installed and then treated with PM, the insecticidal activity of which was subsequently assessed using standard cone assays. Results: Almost all (52) recruited households participated until the end, at which point all houses had been successfully screened. In most cases, screening was only installed after making enabling structural modifications that were accepted by the enrolled households. Compared to unscreened houses, houses with either treated or untreated screens both almost entirely excluded Anopheles arabiensis (Relative reduction (RR) ≥ 98%, P < < 0.0001), the most abundant local malaria vector. However, screens were far less effective against Culex quinquefasciatus (RR ≤ 46%, P < < 0.0001), a non-malaria vector causing considerable biting nuisance, regardless of their treatment status. While PM did not augment household level protection by screens against either mosquito species (P = 0.676 and 0.831, respectively), 8 months after treatment it still caused 73% and 89% mortality among susceptible insectary-reared Anopheles gambiae following exposures of 3 and 30 min, respectively. Conclusions: Participatory approaches to mosquito proofing houses may be acceptable and effective, and installed screens may be suitable targets for residual insecticide treatments

    Using a New Odour-Baited Device to Explore Options for Luring and Killing Outdoor-Biting Malaria Vectors: A Report on Design and Field Evaluation of the Mosquito Landing Box.

    Get PDF
    Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P<=0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P<=0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance

    Proportional decline of Anopheles quadriannulatus and increased contribution of An. arabiensis to the An. gambiae complex following introduction of indoor residual spraying with pirimiphos-methyl: an observational, retrospective secondary analysis of pre-existing data from southeast Zambia

    Get PDF
    Background: Across most of sub-Saharan Africa, malaria is transmitted by mosquitoes from the Anopheles gambiae complex, comprising seven morphologically indistinguishable but behaviourally-diverse sibling species with ecologically-distinct environmental niches. Anopheles gambiae and An. arabiensis are the mostly widely distributed major malaria vectors within the complex, while An. quadriannulatus is sparsely distributed. Methods: Indoor residual spraying (IRS) with the organophosphate pirimiphos-methyl (PM) was conducted four times between 2011 and 2017 in the Luangwa Valley, south-east Zambia. Anopheles mosquitoes were repeatedly collected indoors by several experiments with various objectives conducted in this study area from 2010 onwards. Indoor mosquito collection methods included human landing catches, Centres for Disease Control and Prevention miniature light traps and back pack aspirators. Anopheles gambiae complex mosquitoes were morphologically identified to species level using taxonomic keys, and to molecular level by polymerase chain reaction. These multistudy data were collated so that time trends in the species composition of this complex could be assessed. Results: The proportion of indoor An. gambiae complex accounted for by An. quadriannulatus declined from 95.1% to 69.7% following two application PM-IRS rounds with an emulsifiable concentrate formulation from 2011 to 2013, while insecticidal net utilisation remained consistently high throughout that period. This trend continued after two further rounds of PM-IRS with a longer-lasting capsule suspension formulation in 2015 and 2016/2017, following which An. quadriannulatus accounted for only 4.5% of the complex. During the same time interval there was a correspondingly steady rise in the proportional contribution of An. arabiensis to the complex, from 3.9 to 95.1%, while the contribution of nominate An. gambiae remained stable at ≤ 0.9%. Conclusion: It seems likely that An. arabiensis is not only more behaviourally resilient against IRS than An. gambiae, but also than An. quadriannulatus populations exhibiting indoor-feeding, human-feeding and nocturnal behaviours that are unusual for this species. Routine, programmatic entomological monitoring of dynamic vector population guilds will be critical to guide effective selection and deployment of vector control interventions, including supplementary measures to tackle persisting vectors of residual malaria transmission like An. arabiensis. Keywords: Anopheles, Mosquito, Vector control, Indoor feeding, Outdoor feeding, Residual transmission, Monitoring, Surveillanc

    Control of Malaria Vector Mosquitoes by Insecticide-Treated Combinations of Window Screens and Eave Baffles

    Get PDF
    We assessed window screens and eave baffles (WSEBs), which enable mosquitoes to enter but not exit houses, as an alternative to indoor residual spraying (IRS) for malaria vector control. WSEBs treated with water, the pyrethroid lambda-cyhalothrin, or the organophosphate pirimiphos-methyl, with and without a binding agent for increasing insecticide persistence on netting, were compared with IRS in experimental huts. Compared with IRS containing the same insecticide, WSEBs killed similar proportions of Anopheles funestus mosquitoes that were resistant to pyrethroids, carbamates and organochlorines and greater proportions of pyrethroid-resistant, early exiting An. arabiensis mosquitoes. WSEBs with pirimiphos-methyl killed greater proportions of both vectors than lambda-cyhalothrin or lambda-cyhalothrin plus pirimiphos-methyl and were equally efficacious when combined with binding agent. WSEBs required far less insecticide than IRS, and binding agents might enhance durability. WSEBs might enable affordable deployment of insecticide combinations to mitigate against physiologic insecticide resistance and improve control of behaviorally resistant, early exiting vectors

    Additional file 1 of Participatory development of practical, affordable, insecticide-treated mosquito proofing for a range of housing designs in rural southern Tanzania

    No full text
    Additional file 1. An Excel® spreadsheet file containing all three data tables that were collected and analysed in this study, anonymized by removing all variables containing information that could be used to identify individuals, households or their houses
    corecore