166 research outputs found
Maternal Control of Genomic Imprinting: Effects of Infertility and Ovarian Stimulation in a Mouse Model
Gametogenesis and early embryogenesis are important stages in which genome-wide epigenetic transitions required for early mammalian development are orchestrated. This is exemplified by the occurrence of genomic imprinting, where epigenetic mechanisms lead to the monoallelic expression of a subset of genes. Parental-specific DNA methylation in the gametes results in the distinct nonequivalence of the parental genomes in the early embryo. Changes from normal gamete and embryo development by impaired fertility or assisted reproductive technologies (ARTs) may disrupt the processes of imprint acquisition and imprint maintenance. My hypothesis is that aberrant imprinted methylation arises from impaired maternal fertility or ovarian stimulation (superovulation), and that maternal effect factors involved in imprint regulation are disrupted by ARTs. To evaluate this, I developed a single cell methylation assay to determine DNA methylation patterns in individual oocytes and preimplantation embryos. I used this technique to examine the effects of compromised maternal fertility on imprint acquisition at three imprinted genes in growing oocytes, revealing that Peg1 DNA methylation acquisition was arrested in CX37-null oocytes, but not Snrpn or Peg3. I also used this technique to assess the effects of superovulation on imprint acquisition at four imprinted genes in MII oocytes, showing that imprint acquisition was unaffected at Snrpn, Kcnq1ot1, Peg3 and H19. Finally, I determined the effects of superovulation on the maternal effect factor, ZFP57, during preimplantation development. Mislocalization away from the nucleus and increased protein levels preceded a decrease in protein enrichment at five imprinted domains, Snrpn, Kcnq1ot1, Peg3, Peg1 and H19, proposing a possible mechanism for imprint methylation maintenance loss following ARTs. Data presented in this thesis suggest that infertility can predispose the oocyte to imprinting errors, but imprint acquisition is a relatively robust process and is unaffected by ARTs. Instead, superovulation disrupts one or more key maternal effects factors, including ZFP57, necessary for imprint maintenance during early embryogenesis. Future studies defining additional factors involved in the regulation of genomic imprinting, and improving current ARTs techniques to minimize effects on this pathway, will lead to a reduced incidence of disease in children born under impaired fertility and through assisted reproduction
Fish Oil-Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring
© 2016 Massachusetts Medical Society. Bisgaard, H., Stokholm, J., Chawes, B. L., Vissing, N. H., Bjarnadóttir, E., Schoos, A.-M. M., … Bønnelykke, K. (2016). Fish Oil–Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring. New England Journal of Medicine, 375(26), 2530–2539. https://doi.org/10.1056/NEJMoa1503734BACKGROUND Reduced intake of n-3 long-chain polyunsaturated fatty acids (LCPUFAs) may be a contributing factor to the increasing prevalence of wheezing disorders. We assessed the effect of supplementation with n-3 LCPUFAs in pregnant women on the risk of persistent wheeze and asthma in their offspring. METHODS We randomly assigned 736 pregnant women at 24 weeks of gestation to receive 2.4 g of n-3 LCPUFA (fish oil) or placebo (olive oil) per day. Their children formed the Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC 2010) cohort and were followed prospectively with extensive clinical phenotyping. Neither the investigators nor the participants were aware of group assignments during follow-up for the first 3 years of the children's lives, after which there was a 2-year follow-up period during which only the investigators were unaware of group assignments. The primary end point was persistent wheeze or asthma, and the secondary end points included lower respiratory tract infections, asthma exacerbations, eczema, and allergic sensitization. RESULTS A total of 695 children were included in the trial, and 95.5% completed the 3-year, double-blind follow-up period. The risk of persistent wheeze or asthma in the treatment group was 16.9%, versus 23.7% in the control group (hazard ratio, 0.69; 95% confidence interval [CI], 0.49 to 0.97; P=0.035), corresponding to a relative reduction of 30.7%. Prespecified subgroup analyses suggested that the effect was strongest in the children of women whose blood levels of eicosapentaenoic acid and docosahexaenoic acid were in the lowest third of the trial population at randomization: 17.5% versus 34.1% (hazard ratio, 0.46; 95% CI, 0.25 to 0.83; P=0.011). Analyses of secondary end points showed that supplementation with n-3 LCPUFA was associated with a reduced risk of infections of the lower respiratory tract (31.7% vs. 39.1%; hazard ratio, 0.75; 95% CI, 0.58 to 0.98; P=0.033), but there was no statistically significant association between supplementation and asthma exacerbations, eczema, or allergic sensitization. CONCLUSIONS Supplementation with n-3 LCPUFA in the third trimester of pregnancy reduced the absolute risk of persistent wheeze or asthma and infections of the lower respiratory tract in offspring by approximately 7 percentage points, or one third. (Funded by the Lund-beck Foundation and others; ClinicalTrials.gov number, NCT00798226.)Lundbeck Foundatio
Biallelic loss-of-function variants in PLD1 cause congenital right-sided cardiac valve defects and neonatal cardiomyopathy
Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.1668F is a founder variant among Ashkenazi Jews (allele frequency of -.2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function.Genetics of disease, diagnosis and treatmen
DLG4-related synaptopathy: a new rare brain disorder
PURPOSE: Postsynaptic density protein-95 (PSD-95), encoded by DLG4, regulates excitatory synaptic function in the brain. Here we present the clinical and genetic features of 53 patients (42 previously unpublished) with DLG4 variants.METHODS: The clinical and genetic information were collected through GeneMatcher collaboration. All the individuals were investigated by local clinicians and the gene variants were identified by clinical exome/genome sequencing.RESULTS: The clinical picture was predominated by early onset global developmental delay, intellectual disability, autism spectrum disorder, and attention deficit-hyperactivity disorder, all of which point to a brain disorder. Marfanoid habitus, which was previously suggested to be a characteristic feature of DLG4-related phenotypes, was found in only nine individuals and despite some overlapping features, a distinct facial dysmorphism could not be established. Of the 45 different DLG4 variants, 39 were predicted to lead to loss of protein function and the majority occurred de novo (four with unknown origin). The six missense variants identified were suggested to lead to structural or functional changes by protein modeling studies.CONCLUSION: The present study shows that clinical manifestations associated with DLG4 overlap with those found in other neurodevelopmental disorders of synaptic dysfunction; thus, we designate this group of disorders as DLG4-related synaptopathy.Genetics of disease, diagnosis and treatmen
Heterogeneity of voltage gated sodium current density between neurons decorrelates spiking and suppresses network synchronization in Scn1b null mouse models
Abstract Voltage gated sodium channels (VGSCs) are required for action potential initiation and propagation in mammalian neurons. As with other ion channel families, VGSC density varies between neurons. Importantly, sodium current (I Na ) density variability is reduced in pyramidal neurons of Scn1b null mice. Scn1b encodes the VGSC β1/ β1B subunits, which regulate channel expression, trafficking, and voltage dependent properties. Here, we investigate how variable I Na density in cortical layer 6 and subicular pyramidal neurons affects spike patterning and network synchronization. Constitutive or inducible Scn1b deletion enhances spike timing correlations between pyramidal neurons in response to fluctuating stimuli and impairs spike-triggered average current pattern diversity while preserving spike reliability. Inhibiting I Na with a low concentration of tetrodotoxin similarly alters patterning without impairing reliability, with modest effects on firing rate. Computational modeling shows that broad I Na density ranges confer a similarly broad spectrum of spike patterning in response to fluctuating synaptic conductances. Network coupling of neurons with high I Na density variability displaces the coupling requirements for synchronization and broadens the dynamic range of activity when varying synaptic strength and network topology. Our results show that I Na heterogeneity between neurons potently regulates spike pattern diversity and network synchronization, expanding VGSC roles in the nervous system
- …