330 research outputs found
Expression of suppressor of cytokine signaling 1 (SOCS1) impairs viral clearance and exacerbates lung injury during influenza infection.
Suppressor of cytokine signaling (SOCS) proteins are inducible feedback inhibitors of cytokine signaling. SOCS1-/- mice die within three weeks postnatally due to IFN-γ-induced hyperinflammation. Since it is well established that IFN-γ is dispensable for protection against influenza infection, we generated SOCS1-/-IFN-γ-/- mice to determine whether SOCS1 regulates antiviral immunity in vivo. Here we show that SOCS1-/-IFN-γ-/- mice exhibited significantly enhanced resistance to influenza infection, as evidenced by improved viral clearance, attenuated acute lung damage, and consequently increased survival rates compared to either IFN-γ-/- or WT animals. Enhanced viral clearance in SOCS1-/-IFN-γ-/- mice coincided with a rapid onset of adaptive immune responses during acute infection, while their reduced lung injury was associated with decreased inflammatory cell infiltration at the resolution phase of infection. We further determined the contribution of SOCS1-deficient T cells to antiviral immunity. Anti-CD4 antibody treatment of SOCS1-/-IFN-γ-/- mice had no significant effect on their enhanced resistance to influenza infection, while CD8+ splenocytes from SOCS1-/-IFN-γ-/- mice were sufficient to rescue RAG1-/- animals from an otherwise lethal infection. Surprisingly, despite their markedly reduced viral burdens, RAG1-/- mice reconstituted with SOCS1-/-IFN-γ-/- adaptive immune cells failed to ameliorate influenza-induced lung injury. In conclusion, in the absence of IFN-γ, the cytoplasmic protein SOCS1 not only inhibits adaptive antiviral immune responses but also exacerbates inflammatory lung damage. Importantly, these detrimental effects of SOCS1 are conveyed through discrete cell populations. Specifically, while SOCS1 expression in adaptive immune cells is sufficient to inhibit antiviral immunity, SOCS1 in innate/stromal cells is responsible for aggravated lung injury
Nox2-derived oxidative stress results in inefficacy of antibiotics against post-influenza S. aureus pneumonia.
Clinical post-influenza Staphylococcus aureus pneumonia is characterized by extensive lung inflammation associated with severe morbidity and mortality even after appropriate antibiotic treatment. In this study, we show that antibiotics rescue nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2)-deficient mice but fail to fully protect WT animals from influenza and S. aureus coinfection. Further experiments indicate that the inefficacy of antibiotics against coinfection is attributable to oxidative stress-associated inflammatory lung injury. However, Nox2-induced lung damage during coinfection was not associated with aggravated inflammatory cytokine response or cell infiltration but rather caused by reduced survival of myeloid cells. Specifically, oxidative stress increased necrotic death of inflammatory cells, thereby resulting in lethal damage to surrounding tissue. Collectively, our results demonstrate that influenza infection disrupts the delicate balance between Nox2-dependent antibacterial immunity and inflammation. This disruption leads to not only increased susceptibility to S. aureus infection, but also extensive lung damage. Importantly, we show that combination treatment of antibiotic and NADPH oxidase inhibitor significantly improved animal survival from coinfection. These findings suggest that treatment strategies that target both bacteria and oxidative stress will significantly benefit patients with influenza-complicated S. aureus pneumonia
Border patrol gone awry: Lung NKT cell activation by Francisella tularensis exacerbates tularemia-like disease
The respiratory mucosa is a major site for pathogen invasion and, hence, a site requiring constant immune surveillance. The type I, semi-invariant natural killer T (NKT) cells are enriched within the lung vasculature. Despite optimal positioning, the role of NKT cells in respiratory infectious diseases remains poorly understood. Hence, we assessed their function in a murine model of pulmonary tularemia--because tularemia is a sepsis-like proinflammatory disease and NKT cells are known to control the cellular and humoral responses underlying sepsis. Here we show for the first time that respiratory infection with Francisella tularensis live vaccine strain resulted in rapid accumulation of NKT cells within the lung interstitium. Activated NKT cells produced interferon-γ and promoted both local and systemic proinflammatory responses. Consistent with these results, NKT cell-deficient mice showed reduced inflammatory cytokine and chemokine response yet they survived the infection better than their wild type counterparts. Strikingly, NKT cell-deficient mice had increased lymphocytic infiltration in the lungs that organized into tertiary lymphoid structures resembling induced bronchus-associated lymphoid tissue (iBALT) at the peak of infection. Thus, NKT cell activation by F. tularensis infection hampers iBALT formation and promotes a systemic proinflammatory response, which exacerbates severe pulmonary tularemia-like disease in mice
Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation
Interleukin-17 (IL-17) and IL-17 receptor (IL-17R) signaling are essential for regulating mucosal host defense against many invading pathogens. Commensal bacteria, especially segmented filamentous bacteria (SFB), are a crucial factor that drives T helper 17 (Th17) cell development in the gastrointestinal tract. In this study, we demonstrate that Th17 cells controlled SFB burden. Disruption of IL-17R signaling in the enteric epithelium resulted in SFB dysbiosis due to reduced expression of α-defensins, Pigr and Nox1. When subjected to experimental autoimmune encephalomyelitis, IL-17R signaling deficient mice demonstrated earlier disease onset and worsened severity that was associated with increased intestinal Csf2 expression and elevated systemic GM-CSF cytokine concentrations. Conditional deletion of IL-17R in the enteric epithelium demonstrated that there was a reciprocal relationship between the gut microbiota and enteric IL-17R signaling that controlled dysbiosis, constrained Th17 development, and regulated the susceptibility to autoimmune inflammation
Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants
An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens
Genetic identification of unique immunological responses in mice infected with virulent and attenuated Francisella tularensis
Francisella tularensis is a category A select agent based on its infectivity and virulence but disease mechanisms in infection remain poorly understood. Murine pulmonary models of infection were therefore employed to assess and compare dissemination and pathology and to elucidate the host immune response to infection with the highly virulent Type A F. tularensis strain Schu4 versus the less virulent Type B live vaccine strain (LVS). We found that dissemination and pathology in the spleen was significantly greater in mice infected with F. tularensis Schu4 compared to mice infected with F. tularensis LVS. Using gene expression rofiling to compare the response to infection with the two F. tularensis strains, we found that there were significant differences in the expression of genes involved in the apoptosis pathway, antigen processing and presentation pathways, and inflammatory response pathways in mice infected with Schu4 when compared to LVS. These transcriptional differences coincided with marked differences in dissemination and severity of organ lesions in mice infected with the Schu4 and LVS strains. Therefore, these findings indicate that altered apoptosis, antigen presentation and production of inflammatory mediators explain the differences in pathogenicity of F. tularensis Schu4 and LVS
Dust Devil Tracks
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth’s surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ∼1 m and ∼1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550–850 nm on Mars and around 0.5 % in the wavelength range from 300–1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns
Protective Contributions against Invasive Streptococcus pneumoniae Pneumonia of Antibody and Th17-Cell Responses to Nasopharyngeal Colonisation
The nasopharyngeal commensal bacteria Streptococcus pneumoniae is also a frequent cause of serious infections. Nasopharyngeal colonisation with S. pneumoniae inhibits subsequent re-colonisation by inducing Th17-cell adaptive responses, whereas vaccination prevents invasive infections by inducing antibodies to S. pneumoniae capsular polysaccharides. In contrast, protection against invasive infection after nasopharyngeal colonisation with mutant S. pneumoniae strains was associated with antibody responses to protein antigens. The role of colonisation-induced Th17-cell responses during subsequent invasive infections is unknown. Using mouse models, we show that previous colonisation with S. pneumoniae protects against subsequent lethal pneumonia mainly by preventing bacteraemia with a more modest effect on local control of infection within the lung. Previous colonisation resulted in CD4-dependent increased levels of Th17-cell cytokines during subsequent infectious challenge. However, mice depleted of CD4 cells prior to challenge remained protected against bacteraemia, whereas no protection was seen in antibody deficient mice and similar protection could be achieved through passive transfer of serum. Serum from colonised mice but not antibody deficient mice promoted phagocytosis of S. pneumoniae, and previously colonised mice were able to rapidly clear S. pneumoniae from the blood after intravenous inoculation. Thus, despite priming for a Th17-cell response during subsequent infection, the protective effects of prior colonisation in this model was not dependent on CD4 cells but on rapid clearance of bacteria from the blood by antibody-mediated phagocytosis. These data suggest that whilst nasopharyngeal colonisation induces a range of immune responses, the effective protective responses depend upon the site of subsequent infectio
TLR2, but Not TLR4, Is Required for Effective Host Defence against Chlamydia Respiratory Tract Infection in Early Life
Chlamydia pneumoniae commonly causes respiratory tract infections in children, and epidemiological investigations strongly link infection to the pathogenesis of asthma. The immune system in early life is immature and may not respond appropriately to pathogens. Toll-like receptor (TLR)2 and 4 are regarded as the primary pattern recognition receptors that sense bacteria, however their contribution to innate and adaptive immunity in early life remains poorly defined. We investigated the role of TLR2 and 4 in the induction of immune responses to Chlamydia muridarum respiratory infection, in neonatal wild-type (Wt) or TLR2-deficient (−/−), 4−/− or 2/4−/− BALB/c mice. Wt mice had moderate disease and infection. TLR2−/− mice had more severe disease and more intense and prolonged infection compared to other groups. TLR4−/− mice were asymptomatic. TLR2/4−/− mice had severe early disease and persistent infection, which resolved thereafter consistent with the absence of symptoms in TLR4−/− mice. Wt mice mounted robust innate and adaptive responses with an influx of natural killer (NK) cells, neutrophils, myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells, and activated CD4+ and CD8+ T-cells into the lungs. Wt mice also had effective production of interferon (IFN)γ in the lymph nodes and lung, and proliferation of lymph node T-cells. TLR2−/− mice had more intense and persistent innate (particularly neutrophil) and adaptive cell responses and IL-17 expression in the lung, however IFNγ responses and T-cell proliferation were reduced. TLR2/4−/− mice had reduced innate and adaptive responses. Most importantly, neutrophil phagocytosis was impaired in the absence of TLR2. Thus, TLR2 expression, particularly on neutrophils, is required for effective control of Chlamydia respiratory infection in early life. Loss of control of infection leads to enhanced but ineffective TLR4-mediated inflammatory responses that prolong disease symptoms. This indicates that TLR2 agonists may be beneficial in the treatment of early life Chlamydia infections and associated diseases
Severe and Persistent Depletion of Circulating Plasmacytoid Dendritic Cells in Patients with 2009 Pandemic H1N1 Infection
Background: Dysregulation of host immune responses plays a critical role in the pathogenesis of severe 2009 pandemic H1N1 infection. Whether H1N1 virus could escape innate immune defense in vivo remains to be investigated. The aim of this study was to evaluate the pattern of innate immune response during human 2009 H1N1 infection. We performed the enumeration of circulating myeloid dendritic cells (mDC) and plasmacytoid DC (pDC) in blood from patients with H1N1 pneumonia shortly after the onset of symptoms and during follow-up at different intervals of time. The analysis of CD4 and CD8 count, CD38 T-cell activation marker and serum cytokine/chemokine plasma levels was also done. Methodology/Principal Findings: Blood samples were collected from 13 hospitalized patients with confirmed H1N1-related pneumonia at time of admission and at weeks 1, 4, and 16 of follow-up. 13 healthy donors were enrolled as controls. In the acute phase of the disease, H1N1-infected patients exhibited a significant depletion in both circulating pDC and mDC in conjunction with a decrease of CD4 and CD8 T cell count. In addition, we found plasmatic hyperproduction of IP-10 and RANTES, whereas increase in T-cell immune activation was found at all time points. When we assessed the changes in DC count over time, we observed a progressive normalization of mDC number. On the contrary, H1N1-infected patients did not achieve a complete recovery of pDC count as values remained lower than healthy controls even after 16 weeks of follow-up. Conclusions: H1N1 disease is associated with a profound depletion of DC subsets. The persistence of pDC deficit for several weeks after disease recovery could be due to H1N1 virus itself or to a preexisting impairment of innate immunity
- …