45 research outputs found

    Neuroprotective Effects of Mitochondria-Targeted Plastoquinone in a Rat Model of Neonatal Hypoxic–Ischemic Brain Injury

    No full text
    Neonatal hypoxia–ischemia is one of the main causes of mortality and disability of newborns. To study the mechanisms of neonatal brain cell damage, we used a model of neonatal hypoxia–ischemia in seven-day-old rats, by annealing of the common carotid artery with subsequent hypoxia of 8% oxygen. We demonstrate that neonatal hypoxia–ischemia causes mitochondrial dysfunction associated with high production of reactive oxygen species, which leads to oxidative stress. Targeted delivery of antioxidants to the mitochondria can be an effective therapeutic approach to treat the deleterious effects of brain hypoxia–ischemia. We explored the neuroprotective properties of the mitochondria-targeted antioxidant SkQR1, which is the conjugate of a plant plastoquinone and a penetrating cation, rhodamine 19. Being introduced before or immediately after hypoxia–ischemia, SkQR1 affords neuroprotection as judged by the diminished brain damage and recovery of long-term neurological functions. Using vital sections of the brain, SkQR1 has been shown to reduce the development of oxidative stress. Thus, the mitochondrial-targeted antioxidant derived from plant plastoquinone can effectively protect the brain of newborns both in pre-ischemic and post-stroke conditions, making it a promising candidate for further clinical studies

    Study of the Molecular Mechanisms of the Therapeutic Properties of Extracellular Vesicles

    No full text
    Extracellular vesicles (EVs) are small biological structures that are released by cells and have important roles in intercellular communication [...

    Noncoupled Mitochondrial Respiration as Therapeutic Approach for the Treatment of Metabolic Diseases: Focus on Transgenic Animal Models

    No full text
    Mitochondrial dysfunction contributes to numerous chronic diseases, and mitochondria are targets for various toxins and xenobiotics. Therefore, the development of drugs or therapeutic strategies targeting mitochondria is an important task in modern medicine. It is well known that the primary, although not the sole, function of mitochondria is ATP generation, which is achieved by coupled respiration. However, a high membrane potential can lead to uncontrolled reactive oxygen species (ROS) production and associated dysfunction. For over 50 years, scientists have been studying various synthetic uncouplers, and for more than 30 years, uncoupling proteins that are responsible for uncoupled respiration in mitochondria. Additionally, the proteins of the mitochondrial alternative respiratory pathway exist in plant mitochondria, allowing noncoupled respiration, in which electron flow is not associated with membrane potential formation. Over the past two decades, advances in genetic engineering have facilitated the creation of various cellular and animal models that simulate the effects of uncoupled and noncoupled respiration in different tissues under various disease conditions. In this review, we summarize and discuss the findings obtained from these transgenic models. We focus on the advantages and limitations of transgenic organisms, the observed physiological and biochemical changes, and the therapeutic potential of uncoupled and noncoupled respiration

    Protective Effects of PGC-1α Activators on Ischemic Stroke in a Rat Model of Photochemically Induced Thrombosis

    No full text
    The pharmacological induction and activation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), a key regulator of ischemic brain tolerance, is a promising direction in neuroprotective therapy. Pharmacological agents with known abilities to modulate cerebral PGC-1α are scarce. This study focused on the potential PGC-1α-modulating activity of Mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) and Semax (ACTH(4–7) analog) in a rat model of photochemical-induced thrombosis (PT) in the prefrontal cortex. Mexidol (100 mg/kg) was administered intraperitoneally, and Semax (25 μg/kg) was administered intranasally, for 7 days each. The expression of PGC-1α and PGC-1α-dependent protein markers of mitochondriogenesis, angiogenesis, and synaptogenesis was measured in the penumbra via immunoblotting at Days 1, 3, 7, and 21 after PT. The nuclear content of PGC-1α was measured immunohistochemically. The suppression of PGC-1α expression was observed in the penumbra from 24 h to 21 days following PT and reflected decreases in both the number of neurons and PGC-1α expression in individual neurons. Administration of Mexidol or Semax was associated with preservation of the neuron number and neuronal expression of PGC-1α, stimulation of the nuclear translocation of PGC-1α, and increased contents of protein markers for PGC-1α activation. This study opens new prospects for the pharmacological modulation of PGC-1α in the ischemic brain

    Three-Hour Argon Inhalation Has No Neuroprotective Effect after Open Traumatic Brain Injury in Rats

    No full text
    In vivo studies of the therapeutic effects of argon in traumatic brain injury (TBI) are limited, and their results are contradictory. The aim of this study was to evaluate the effect of a three-hour inhalation of argon (70%Ar/30%O2) after an open TBI on the severity of the neurological deficit and the degree of brain damage in rats. The experiments were performed on male Wistar rats (n = 35). The TBI was simulated by the dosed open brain contusion injury. The animals were divided into three groups: sham-operated (SO, n = 7); TBI + 70%N2/30%O2 (TBI, n = 14); TBI + 70%Ar/30%O2 (TBI + iAr, n = 14). The Neurological status was assessed over a 14-day period (using the limb-placing and cylinder tests). Magnetic resonance imaging (MRI) scans and a histological examination of the brain with an assessment of the volume of the lesions were performed 14 days after the injury. At each of the time points (days 1, 7, and 14), the limb-placing test score was lower in the TBI and TBI + iAr groups than in the SO group, while there were no significant differences between the TBI and TBI + iAr groups. Additionally, no differences were found between these groups in the cylinder test scores (day 13). The volume of brain damage (tissue loss) according to both the MRI and histological findings did not differ between the TBI and TBI + iAr groups. A three-hour inhalation of argon (70%Ar/30%O2) after a TBI had no neuroprotective effect

    Mechanisms of LPS-Induced Acute Kidney Injury in Neonatal and Adult Rats

    No full text
    Neonatal sepsis is one of the major causes of mortality and morbidity in newborns, greatly associated with severe acute kidney injury (AKI) and failure. Handling of newborns with kidney damage can be significantly different compared to adults, and it is necessary to consider the individuality of an organism’s response to systemic inflammation. In this study, we used lipopolysaccharide (LPS)-mediated acute kidney injury model to study mechanisms of kidney cells damage in neonatal and adult rats. We found LPS-associated oxidative stress was more severe in adults compared to neonates, as judged by levels of carbonylated proteins and products of lipids peroxidation. In both models, LPS-mediated septic simulation caused apoptosis of kidney cells, albeit to a different degree. Elevated levels of proliferating cell nuclear antigen (PCNA) in the kidney dropped after LPS administration in neonates but increased in adults. Renal fibrosis, as estimated by smooth muscle actin levels, was significantly higher in adult kidneys, whereas these changes were less profound in LPS-treated neonatal kidneys. We concluded that in LPS-mediated AKI model, renal cells of neonatal rats were more tolerant to oxidative stress and suffered less from long-term pathological consequences, such as fibrosis. In addition, we assume that by some features LPS administration simulates the conditions of accelerated aging

    Miro1 Enhances Mitochondria Transfer from Multipotent Mesenchymal Stem Cells (MMSC) to Neural Cells and Improves the Efficacy of Cell Recovery

    No full text
    A recently discovered key role of reactive oxygen species (ROS) in mitochondrial traffic has opened a wide alley for studying the interactions between cells, including stem cells. Since its discovery in 2006, intercellular mitochondria transport has been intensively studied in different cellular models as a basis for cell therapy, since the potential of replacing malfunctioning organelles appears to be very promising. In this study, we explored the transfer of mitochondria from multipotent mesenchymal stem cells (MMSC) to neural cells and analyzed its efficacy under normal conditions and upon induction of mitochondrial damage. We found that mitochondria were transferred from the MMSC to astrocytes in a more efficient manner when the astrocytes were exposed to ischemic damage associated with elevated ROS levels. Such transport of mitochondria restored the bioenergetics of the recipient cells and stimulated their proliferation. The introduction of MMSC with overexpressed Miro1 in animals that had undergone an experimental stroke led to significantly improved recovery of neurological functions. Our data suggest that mitochondrial impairment in differentiated cells can be compensated by receiving healthy mitochondria from MMSC. We demonstrate a key role of Miro1, which promotes the mitochondrial transfer from MMSC and suggest that the genetic modification of stem cells can improve the therapies for the injured brain

    Age-Associated Loss in Renal Nestin-Positive Progenitor Cells

    No full text
    The decrease in the number of resident progenitor cells with age was shown for several organs. Such a loss is associated with a decline in regenerative capacity and a greater vulnerability of organs to injury. However, experiments evaluating the number of progenitor cells in the kidney during aging have not been performed until recently. Our study tried to address the change in the number of renal progenitor cells with age. Experiments were carried out on young and old transgenic nestin-green fluorescent protein (GFP) reporter mice, since nestin is suggested to be one of the markers of progenitor cells. We found that nestin+ cells in kidney tissue were located in the putative niches of resident renal progenitor cells. Evaluation of the amount of nestin+ cells in the kidneys of different ages revealed a multifold decrease in the levels of nestin+ cells in old mice. In vitro experiments on primary cultures of renal tubular cells showed that all cells including nestin+ cells from old mice had a lower proliferation rate. Moreover, the resistance to damaging factors was reduced in cells obtained from old mice. Our data indicate the loss of resident progenitor cells in kidneys and a decrease in renal cells proliferative capacity with aging
    corecore