76 research outputs found

    Radiotherapy after mastectomy : is highest better?

    Get PDF

    Recent advances in radiotherapy

    Get PDF
    Radiation therapy has come a long way from treatment planning based on orthogonal radiographs with large margins around tumours. Advances in imaging and radiation planning software have led to three-dimensional conformal radiotherapy and, further, to intensity modulated radiotherapy (IMRT). IMRT permits sparing of normal tissues and hence dose-escalation to tumours. IMRT is the current standard in treatment of head and prostate cancer and is being investigated in other tumour sites. Exquisitely sculpted dose distributions (increased geographical miss) with IMRT, plus tumour motion and anatomical changes during radiotherapy make image guided radiotherapy an essential part of modern radiation delivery. Various hardware and software tools are under investigation for optimal IGRT

    Tetraspanin CD151 is a novel prognostic marker in poor outcome endometrial cancer

    Get PDF
    BACKGROUND: Type II cancers account for 10% of endometrial cancers but 50% of recurrence. Response rates to chemotherapy at recurrence are poor and better prognostic markers are needed to guide therapy. CD151 is a small transmembrane protein that regulates cell migration and facilitates cancer metastasis. High CD151 expression confers poor prognosis in breast, pancreatic and colorectal cancer. The prognostic significance of tetraspanin CD151 expression in poor outcome endometrial cancers was evaluated, along with oestrogen receptor (ER), progesterone receptor (PR), p53, human epidermal growth factor receptor -2 (HER-2), and CD 151 staining compared with α6β1, α3β1 integrins, and E-cadherin. METHODS: Tissue microarray constructed from 156 poor outcome endometrial cancers, tested with immunohistochemistry and staining correlated with clinicopathological data were used. A total of 131 data sets were complete for analysis. RESULTS: Expression of CD151 was significantly higher in uterine papillary serous and clear cell carcinoma than in grade 3 endometrioid carcinoma, sarcoma or carcinosarcoma (P<0.001). In univariate analysis, age, stage, histology type and CD151 were significant for both recurrence free (RFS) and disease specific survival (DSS). In multivariate analyses, CD151 was significant for RFS and DSS (P=0.036 and 0.033, respectively) in triple negative (ER, PR and HER-2 negative) tumours (88/131). The HER-2, p53, ER and PR were not prognostic for survival. There was strong concordance of CD151 with E-cadherin (98%), but not with α6β1 (35%), α3β1 staining (60%). CONCLUSION: The CD151 is a novel marker in type 2 cancers that can guide therapeutic decisions. CD151 may have an important role in tumourigenesis in some histology types

    Clinical development of new drug-radiotherapy combinations.

    Get PDF
    In countries with the best cancer outcomes, approximately 60% of patients receive radiotherapy as part of their treatment, which is one of the most cost-effective cancer treatments. Notably, around 40% of cancer cures include the use of radiotherapy, either as a single modality or combined with other treatments. Radiotherapy can provide enormous benefit to patients with cancer. In the past decade, significant technical advances, such as image-guided radiotherapy, intensity-modulated radiotherapy, stereotactic radiotherapy, and proton therapy enable higher doses of radiotherapy to be delivered to the tumour with significantly lower doses to normal surrounding tissues. However, apart from the combination of traditional cytotoxic chemotherapy with radiotherapy, little progress has been made in identifying and defining optimal targeted therapy and radiotherapy combinations to improve the efficacy of cancer treatment. The National Cancer Research Institute Clinical and Translational Radiotherapy Research Working Group (CTRad) formed a Joint Working Group with representatives from academia, industry, patient groups and regulatory bodies to address this lack of progress and to publish recommendations for future clinical research. Herein, we highlight the Working Group's consensus recommendations to increase the number of novel drugs being successfully registered in combination with radiotherapy to improve clinical outcomes for patients with cancer.National Institute for Health ResearchThis is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/nrclinonc.2016.7

    Status of the Soleil Upgrade Lattice Robustness Studies

    Get PDF
    International audienceThe SOLEIL synchrotron has entered its Technical Design Report (TDR) phase for the upgrade of its storage ring to a fourth generation synchrotron light source. Verification of the equipment specifications (alignment, magnets, power supplies, BPMs), and the methodology for optics corrections are critical in order to ensure the feasibility of rapid commissioning restoring full performance for daily operations. The end-to-end simulation, from beam threading in the first turns to beam storage and stacking, should be handled with a comprehensive model close to the actual commissioning procedure, taking into account all practical steps. During 2021 and 2022, the CDR lattice has undergone significant modifications in response to additional constraints. In this paper, we present an update of the robustness studies for the TDR baseline lattice

    Poly(ADP-ribose) polymerase, a major determinant of early cell response to ionizing radiation

    No full text
    PURPOSE: To determine whether DNA-dependent protein kinase (DNA-PK) and poly(ADP-ribose) polymerase (PARP-1) are involved in eliciting the rapid fluctuations of radiosensitivity that have been observed when cells are exposed to short pulses of ionizing radiation. MATERIALS AND METHODS: The effect of DNA-PK and PARP-1 inhibitors on the survival of cells to split-dose irradiation was investigated using Chinese hamster V79 fibroblasts and human carcinoma SQ-20B cells. The responses of PARP-1 proficient and PARP-1 knockout mouse 3T3 fibroblasts were compared in a similar split-dose assay. RESULTS: Inactivation of DNA-PK by wortmannin potentiated radiation-induced cell kill but it did not alter the oscillatory, W-shaped pattern of early radiation response. In contrast, oscillatory radiation response was abolished by 3-aminobenzamide, a reversible inhibitor of enzymes containing a PARP catalytic domain. The oscillatory response was also lacking in PARP-1 knockout mouse 3T3 fibroblasts. CONCLUSION: The results show that PARP-1 plays a key role in the earliest steps of cell response to ionizing radiation with clonogenic ability or growth as endpoint. It is hypothesized that rapid poly(ADP-ribosylation) of target proteins, or recruitment of repair proteins by activated PARP-1 at the sites of DNA damage, bring about rapid chromatin remodelling that may affect the incidence of chromosomal damage upon re-irradiation
    corecore