42,623 research outputs found
Computing the Least-core and Nucleolus for Threshold Cardinality Matching Games
Cooperative games provide a framework for fair and stable profit allocation
in multi-agent systems. \emph{Core}, \emph{least-core} and \emph{nucleolus} are
such solution concepts that characterize stability of cooperation. In this
paper, we study the algorithmic issues on the least-core and nucleolus of
threshold cardinality matching games (TCMG). A TCMG is defined on a graph
and a threshold , in which the player set is and the profit of
a coalition is 1 if the size of a maximum matching in
meets or exceeds , and 0 otherwise. We first show that for a TCMG, the
problems of computing least-core value, finding and verifying least-core payoff
are all polynomial time solvable. We also provide a general characterization of
the least core for a large class of TCMG. Next, based on Gallai-Edmonds
Decomposition in matching theory, we give a concise formulation of the
nucleolus for a typical case of TCMG which the threshold equals . When
the threshold is relevant to the input size, we prove that the nucleolus
can be obtained in polynomial time in bipartite graphs and graphs with a
perfect matching
The Euler--Maxwell system for electrons: global solutions in
A basic model for describing plasma dynamics is given by the Euler-Maxwell
system, in which compressible ion and electron fluids interact with their own
self-consistent electromagnetic field. In this paper we consider the
"one-fluid" Euler--Maxwell model for electrons, in 2 spatial dimensions, and
prove global stability of a constant neutral background.Comment: Revised versio
Fast decoding of a d(min) = 6 RS code
A method for high speed decoding a d sub min = 6 Reed-Solomon (RS) code is presented. Properties of the two byte error correcting and three byte error detecting RS code are discussed. Decoding using a quadratic equation is shown. Theorems and concomitant proofs are included to substantiate this decoding method
On the undetected error probability of a concatenated coding scheme for error control
Consider a concatenated coding scheme for error control on a binary symmetric channel, called the inner channel. The bit error rate (BER) of the channel is correspondingly called the inner BER, and is denoted by Epsilon (sub i). Two linear block codes, C(sub f) and C(sub b), are used. The inner code C(sub f), called the frame code, is an (n,k) systematic binary block code with minimum distance, d(sub f). The frame code is designed to correct + or fewer errors and simultaneously detect gamma (gamma +) or fewer errors, where + + gamma + 1 = to or d(sub f). The outer code C(sub b) is either an (n(sub b), K(sub b)) binary block with a n(sub b) = mk, or an (n(sub b), k(Sub b) maximum distance separable (MDS) code with symbols from GF(q), where q = 2(b) and the code length n(sub b) satisfies n(sub)(b) = mk. The integerim is the number of frames. The outercode is designed for error detection only
An extended d(min) = 4 RS code
A minimum distance d sub m - 4 extended Reed - Solomon (RS) code over GF (2 to the b power) was constructed. This code is used to correct any single byte error and simultaneously detect any double byte error. Features of the code; including fast encoding and decoding, are presented
- …