34 research outputs found
Observation of enhanced carrier transport properties of Si <100>-oriented whiskers under uniaxial strains
In this study, enhancements of the carrier transport properties of p-type 100-oriented Si whiskers are observed under uniaxial tensile and compressive strains. It has been found that over 400 enhancement of electrical conductivity is achieved under a 2 tensile strain, while a 2 compressive strain can only cause ∼80 conductivity enhancement. The enhancements are mainly attributed to the breaking of the degeneracy of the v2 and v1 valence bands induced a reduction of the hole effective mass. This study provides an important insight of how the carrier mobility variation caused by the strain impact on their transport properties
CXCL9 Is a Potential Biomarker of Immune Infiltration Associated With Favorable Prognosis in ER-Negative Breast Cancer
The chemokine CXCL9 (C-X-C motif chemokine ligand 9) has been reported to be required for antitumour immune responses following immune checkpoint blockade. In this study, we sought to investigate the potential value of CXCL9 according to immune responses in patients with breast cancer (BC). A variety of open-source databases and online tools were used to explore the expression features and prognostic significance of CXCL9 in BC and its correlation with immune-related biomarkers followed by subsequent verification with immunohistochemistry experiments. The CXCL9 mRNA level was found to be significantly higher in BC than in normal tissue and was associated with better survival outcomes in patients with ER-negative tumours. Moreover, CXCL9 is significantly correlated with immune cell infiltration and immune-related biomarkers, including CTLA4, GZMB, LAG3, PDCD1 and HAVCR2. Finally, we performed immunohistochemistry with breast cancer tissue samples and observed that CXCL9 is highly expressed in the ER-negative subgroup and positively correlated with the immune-related factors LAG3, PD1, PDL1 and CTLA4 to varying degrees. These findings suggest that CXCL9 is an underlying biomarker for predicting the status of immune infiltration in ER-negative breast cancer
Recommended from our members
Clonal evolution in liver cancer at single-cell and single-variant resolution.
Genetic heterogeneity of tumor is closely related to its clonal evolution, phenotypic diversity and treatment resistance, and such heterogeneity has only been characterized at single-cell sub-chromosomal scale in liver cancer. Here we reconstructed the single-variant resolution clonal evolution in human liver cancer based on single-cell mutational profiles. The results indicated that key genetic events occurred early during tumorigenesis, and an early metastasis followed by independent evolution was observed in primary liver tumor and intrahepatic metastatic portal vein tumor thrombus. By parallel single-cell RNA-Seq, the transcriptomic phenotype of HCC was found to be related with genetic heterogeneity. For the first time we reconstructed the single-cell and single-variant clonal evolution in human liver cancer, and dissection of both genetic and phenotypic heterogeneity will facilitate better understanding of their relationship
Direct observation of structural transitions in the phase change material Ge2Sb2Te5
Phase change memory, which is based on the reversible switching of phase change materials between amorphous and crystalline states, is one of the most promising bases of nonvolatile memory devices. However, the transition mechanism remains poorly understood. In this study, via in situ transmission electron microscopy with an externally applied DC voltage and nanosecond electrical pulses, for the first time we revealed a reversible structural evolution of GeSbTe thin films from an amorphous state to a single-crystal state via polycrystals as an intermediate state. This transition is different from the traditional understanding of structural changes in GeSbTe, i.e., from an amorphous structure to a hexagonal close-packed structure via face-centered cubic as an intermediate structure. In situ observations indicate that this poly-to-single crystal structural transition is caused by coalescence of neighbouring grains induced by an electric field, in which a fast heating/cooling rate is found to be essential. Our study opens a new avenue for the realization of the multi-level operation of phase change materials