130 research outputs found

    The effect of β-cyclocitral treatment on the carotenoid content of transgenic Marsh grapefruit (Citrus paradisi Macf.) suspension-cultured cells

    Get PDF
    Zheng, Xiongjie, Zhu, Kaijie, Ye, Junli, Price, Elliott J., Deng, Xiuxin, Fraser, Paul D. (2020): The effect of β-cyclocitral treatment on the carotenoid content of transgenic Marsh grapefruit (Citrus paradisi Macf.) suspension-cultured cells. Phytochemistry (112509) 180: 1-8, DOI: 10.1016/j.phytochem.2020.112509, URL: http://dx.doi.org/10.1016/j.phytochem.2020.11250

    Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interest in lycopene metabolism and regulation is growing rapidly because accumulative studies have suggested an important role for lycopene in human health promotion. However, little is known about the molecular processes regulating lycopene accumulation in fruits other than tomato so far.</p> <p>Results</p> <p>On a spontaneous sweet orange bud mutant with abnormal lycopene accumulation in fruits and its wild type, comparative transcripts profiling was performed using Massively Parallel Signature Sequencing (MPSS). A total of 6,877,027 and 6,275,309 reliable signatures were obtained for the wild type (WT) and the mutant (MT), respectively. Interpretation of the MPSS signatures revealed that the total number of transcribed gene in MT is 18,106, larger than that in WT 17,670, suggesting that newly initiated transcription occurs in the MT. Further comparison of the transcripts abundance between MT and WT revealed that 3,738 genes show more than two fold expression difference, and 582 genes are up- or down-regulated at 0.05% significance level by more than three fold difference. Functional assignments of the differentially expressed genes indicated that 26 reliable metabolic pathways are altered in the mutant; the most noticeable ones are carotenoid biosynthesis, photosynthesis, and citrate cycle. These data suggest that enhanced photosynthesis and partial impairment of lycopene downstream flux are critical for the formation of lycopene accumulation trait in the mutant.</p> <p>Conclusion</p> <p>This study provided a global picture of the gene expression changes in a sweet orange red-flesh mutant as compared to the wild type. Interpretation of the differentially expressed genes revealed new insight into the molecular processes regulating lycopene accumulation in the sweet orange red-flesh mutant.</p

    Integrated Optimization of Service-Oriented Train Plan and Schedule on Intercity Rail Network with Varying Demand

    Get PDF
    For a better service level of a train operating plan, we propose an integrated optimization method of train planning and train scheduling, which generally are optimized, respectively. Based on the cost analysis of both passengers travelling and enterprises operation, and the constraint analysis of trains operation, we construct a multiobjective function and build an integrated optimization model with the aim of reducing both passenger travel costs and enterprise operating costs. Then, a solving algorithm is established based on the simulated annealing algorithm. Finally, using as an example the Changzhutan intercity rail network, as an example we analyze the optimized results and the influence of the model parameters on the results

    The effects of aB-crystallin on mitochondrial death pathway during hydrogen peroxide induced apoptosis

    Get PDF
    aB-crystallin, a major small heat shock protein, has recently been shown to exert inhibitory effects on apoptosis, while the responsible mechanisms remain largely unknown. In the present study, we discovered that aB-crystallin protected mouse myoblast C2C12 cells against oxidative stress-induced apoptosis. During hydrogen peroxide-induced apoptosis, aBcrystallin showed that it decreased the redistribution level of phosphatidylserine (PS), reduced the release of cytochrome C and Smac/Diablo from mitochondria into cytoplasm, and decreased the cleavage of Bid. Interestingly, immunoprecipitation experiments with anti-aBcrystallin and anti-myc-tag antibodies demonstrated respectively an interaction between aBcrystallin and p53 during hydrogen peroxide induced apoptosis. Both the NH2-terminal and COOH-terminal regions of aB-crystallin could interact with p53, suggesting two domains of aB-crystallin are necessary for the interaction. Electrophoresis mobility shift assay (EMSA) and luciferase assay further demonstrated that aB-crystallin inhibited the upregulation of the DNA-binding, as well as the transactivation activity of p53 induced by hydrogen peroxide. Our results show that aB-crystallin has a protective role in oxidative stress induced apoptosis by interference with the mitochondrial death pathway

    Case report: Interstitial implantation radiotherapy combined with immunotherapy and GM-CSF in oligometastatic platinum-resistant ovarian cancer

    Get PDF
    BackgroundTreatment for platinum-resistant ovarian cancer is challenging. Currently, platinum-resistant ovarian cancer is typically treated with non-platinum single-agent chemotherapy ± bevacizumab, but the prognosis is often extremely poor. In the treatment of platinum-resistant ovarian cancer patients, reports of triple therapy with interstitial implantation radiotherapy combined with immunotherapy and granulocyte-macrophage colony-stimulating factor (GM-CSF) (PRaG for short) are relatively rare.Case descriptionHere, we report a patient with oligometastatic platinum-resistant ovarian cancer. The patient achieved partial response (PR) of the lesion and sustained benefit for more than six months after receiving interstitial implantation radiotherapy combined with immunotherapy along with GM-CSF.ConclusionThis triple therapy may provide additional options for these patients

    Targeting epithelial-mesenchymal transition and cancer stem cells for chemoresistant ovarian cancer

    Full text link
    Chemoresistance is the main challenge for the recurrent ovarian cancer therapy and responsible for treatment failure and unfavorable clinical outcome. Understanding mechanisms of chemoresistance in ovarian cancer would help to predict disease progression, develop new therapies and personalize systemic therapy. In the last decade, accumulating evidence demonstrates that epithelial-mesenchymal transition and cancer stem cells play important roles in ovarian cancer chemoresistance and metastasis. Treatment of epithelial-mesenchymal transition and cancer stem cells holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. In this review, we focus on the role of epithelial-mesenchymal transition and cancer stem cells in ovarian cancer chemoresistance and explore the therapeutic implications for developing epithelial-mesenchymal transition and cancer stem cells associated therapies for future ovarian cancer treatment

    The Effects of ATIR Blocker on the Severity of COVID-19 in Hypertensive Inpatients and Virulence of SARS-CoV-2 in Hypertensive hACE2 Transgenic Mice.

    Get PDF
    Angiotensin-converting enzyme 2 (ACE2) is required for the cellular entry of the severe acute respiratory syndrome coronavirus 2. ACE2, via the Ang-(1-7)-Mas-R axis, is part of the antihypertensive and cardioprotective effects of the renin-angiotensin system. We studied hospitalized COVID-19 patients with hypertension and hypertensive human(h) ACE2 transgenic mice to determine the outcome of COVID-19 with or without AT1 receptor (AT1R) blocker treatment. The severity of the illness and the levels of serum cardiac biomarkers (CK, CK-BM, cTnI), as well as the inflammation markers (IL-1, IL-6, CRP), were lesser in hypertensive COVID-19 patients treated with AT1R blockers than those treated with other antihypertensive drugs. Hypertensive hACE2 transgenic mice, pretreated with AT1R blocker, had increased ACE2 expression and SARS-CoV-2 in the kidney and heart, 1 day post-infection. We conclude that those hypertensive patients treated with AT1R blocker may be at higher risk for SARS-CoV-2 infection. However, AT1R blockers had no effect on the severity of the illness but instead may have protected COVID-19 patients from heart injury, via the ACE2-angiotensin1-7-Mas receptor axis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12265-021-10147-3
    corecore