4,674 research outputs found

    Some Aspects of Measurement Error in Linear Regression of Astronomical Data

    Full text link
    I describe a Bayesian method to account for measurement errors in linear regression of astronomical data. The method allows for heteroscedastic and possibly correlated measurement errors, and intrinsic scatter in the regression relationship. The method is based on deriving a likelihood function for the measured data, and I focus on the case when the intrinsic distribution of the independent variables can be approximated using a mixture of Gaussians. I generalize the method to incorporate multiple independent variables, non-detections, and selection effects (e.g., Malmquist bias). A Gibbs sampler is described for simulating random draws from the probability distribution of the parameters, given the observed data. I use simulation to compare the method with other common estimators. The simulations illustrate that the Gaussian mixture model outperforms other common estimators and can effectively give constraints on the regression parameters, even when the measurement errors dominate the observed scatter, source detection fraction is low, or the intrinsic distribution of the independent variables is not a mixture of Gaussians. I conclude by using this method to fit the X-ray spectral slope as a function of Eddington ratio using a sample of 39 z < 0.8 radio-quiet quasars. I confirm the correlation seen by other authors between the radio-quiet quasar X-ray spectral slope and the Eddington ratio, where the X-ray spectral slope softens as the Eddington ratio increases.Comment: 39 pages, 11 figures, 1 table, accepted by ApJ. IDL routines (linmix_err.pro) for performing the Markov Chain Monte Carlo are available at the IDL astronomy user's library, http://idlastro.gsfc.nasa.gov/homepage.htm

    Designing a Belief Function-Based Accessibility Indicator to Improve Web Browsing for Disabled People

    Get PDF
    The purpose of this study is to provide an accessibility measure of web-pages, in order to draw disabled users to the pages that have been designed to be ac-cessible to them. Our approach is based on the theory of belief functions, using data which are supplied by reports produced by automatic web content assessors that test the validity of criteria defined by the WCAG 2.0 guidelines proposed by the World Wide Web Consortium (W3C) organization. These tools detect errors with gradual degrees of certainty and their results do not always converge. For these reasons, to fuse information coming from the reports, we choose to use an information fusion framework which can take into account the uncertainty and imprecision of infor-mation as well as divergences between sources. Our accessibility indicator covers four categories of deficiencies. To validate the theoretical approach in this context, we propose an evaluation completed on a corpus of 100 most visited French news websites, and 2 evaluation tools. The results obtained illustrate the interest of our accessibility indicator

    Condition monitoring of an advanced gas-cooled nuclear reactor core

    Get PDF
    A critical component of an advanced gas-cooled reactor station is the graphite core. As a station ages, the graphite bricks that comprise the core can distort and may eventually crack. Since the core cannot be replaced, the core integrity ultimately determines the station life. Monitoring these distortions is usually restricted to the routine outages, which occur every few years, as this is the only time that the reactor core can be accessed by external sensing equipment. This paper presents a monitoring module based on model-based techniques using measurements obtained during the refuelling process. A fault detection and isolation filter based on unknown input observer techniques is developed. The role of this filter is to estimate the friction force produced by the interaction between the wall of the fuel channel and the fuel assembly supporting brushes. This allows an estimate to be made of the shape of the graphite bricks that comprise the core and, therefore, to monitor any distortion on them

    Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background

    Get PDF
    Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage; non-homogeneous, correlated instrumental noise; and foreground emission is a problem of central importance for the extraction of cosmological information from the cosmic microwave background. We develop a Monte Carlo approach for the maximum likelihood estimation of the power spectrum. The method is based on an identity for the Bayesian posterior as a marginalization over unknowns. Maximization of the posterior involves the computation of expectation values as a sample average from maps of the cosmic microwave background and foregrounds given some current estimate of the power spectrum or cosmological model, and some assumed statistical characterization of the foregrounds. Maps of the CMB are sampled by a linear transform of a Gaussian white noise process, implemented numerically with conjugate gradient descent. For time series data with N_{t} samples, and N pixels on the sphere, the method has a computational expense $KO[N^{2} +- N_{t} +AFw-log N_{t}], where K is a prefactor determined by the convergence rate of conjugate gradient descent. Preconditioners for conjugate gradient descent are given for scans close to great circle paths, and the method allows partial sky coverage for these cases by numerically marginalizing over the unobserved, or removed, region.Comment: submitted to Ap

    Clustering as an example of optimizing arbitrarily chosen objective functions

    Get PDF
    This paper is a reflection upon a common practice of solving various types of learning problems by optimizing arbitrarily chosen criteria in the hope that they are well correlated with the criterion actually used for assessment of the results. This issue has been investigated using clustering as an example, hence a unified view of clustering as an optimization problem is first proposed, stemming from the belief that typical design choices in clustering, like the number of clusters or similarity measure can be, and often are suboptimal, also from the point of view of clustering quality measures later used for algorithm comparison and ranking. In order to illustrate our point we propose a generalized clustering framework and provide a proof-of-concept using standard benchmark datasets and two popular clustering methods for comparison

    Reconstruction of photon statistics using low performance photon counters

    Get PDF
    The output of a photodetector consists of a current pulse whose charge has the statistical distribution of the actual photon numbers convolved with a Bernoulli distribution. Photodetectors are characterized by a nonunit quantum efficiency, i.e. not all the photons lead to a charge, and by a finite resolution, i.e. a different number of detected photons leads to a discriminable values of the charge only up to a maximum value. We present a detailed comparison, based on Monte Carlo simulated experiments and real data, among the performances of detectors with different upper limits of counting capability. In our scheme the inversion of Bernoulli convolution is performed by maximum-likelihood methods assisted by measurements taken at different quantum efficiencies. We show that detectors that are only able to discriminate between zero, one and more than one detected photons are generally enough to provide a reliable reconstruction of the photon statistics for single-peaked distributions, while detectors with higher resolution limits do not lead to further improvements. In addition, we demonstrate that, for semiclassical states, even on/off detectors are enough to provide a good reconstruction. Finally, we show that a reliable reconstruction of multi-peaked distributions requires either higher quantum efficiency or better capability in discriminating high number of detected photons.Comment: 8 pages, 3 figure

    The Time Machine: A Simulation Approach for Stochastic Trees

    Full text link
    In the following paper we consider a simulation technique for stochastic trees. One of the most important areas in computational genetics is the calculation and subsequent maximization of the likelihood function associated to such models. This typically consists of using importance sampling (IS) and sequential Monte Carlo (SMC) techniques. The approach proceeds by simulating the tree, backward in time from observed data, to a most recent common ancestor (MRCA). However, in many cases, the computational time and variance of estimators are often too high to make standard approaches useful. In this paper we propose to stop the simulation, subsequently yielding biased estimates of the likelihood surface. The bias is investigated from a theoretical point of view. Results from simulation studies are also given to investigate the balance between loss of accuracy, saving in computing time and variance reduction.Comment: 22 Pages, 5 Figure

    The Weibull-Geometric distribution

    Full text link
    In this paper we introduce, for the first time, the Weibull-Geometric distribution which generalizes the exponential-geometric distribution proposed by Adamidis and Loukas (1998). The hazard function of the last distribution is monotone decreasing but the hazard function of the new distribution can take more general forms. Unlike the Weibull distribution, the proposed distribution is useful for modeling unimodal failure rates. We derive the cumulative distribution and hazard functions, the density of the order statistics and calculate expressions for its moments and for the moments of the order statistics. We give expressions for the R\'enyi and Shannon entropies. The maximum likelihood estimation procedure is discussed and an algorithm EM (Dempster et al., 1977; McLachlan and Krishnan, 1997) is provided for estimating the parameters. We obtain the information matrix and discuss inference. Applications to real data sets are given to show the flexibility and potentiality of the proposed distribution
    • …
    corecore