43 research outputs found
Building A High-Resolution Vegetation Outlook Model to Monitor Agricultural Drought for the Upper Blue Nile Basin, Ethiopia
To reduce the impacts of drought, developing an integrated drought monitoring tool and early warning system is crucial and more effective than the crisis management approach that is commonly used in developing countries like Ethiopia. The overarching goal of this study was to develop a higher-spatial-resolution vegetation outlook (VegOut-UBN) model that integrates multiple satellite, climatic, and biophysical input variables for the Upper Blue Nile (UBN) basin. VegOut-UBN uses current and historical observations in predicting the vegetation condition at multiple leading time steps of 1, 3, 6, and 9 dekades. VegOut-UBN was developed to predict the vegetation condition during the main crop-growing season locally called “Kiremt” (June to September) using historical input data from 2001 to 2016. The rule-based regression tree approach was used to develop the relationship between the predictand and predictor variables. The results for the recent historic drought (2009 and 2015) and non-drought (2007) years are presented to evaluate the model accuracy during extreme weather conditions. The result, in general, shows that the predictive accuracy of the model decreases as the prediction interval increases for the cross-validation years. The coefficient of determination (R2) of the predictive and observed vegetation condition shows a higher value (R2 \u3e 0.8) for one-month prediction and a relatively lower value (R2 = 0.70) for three-month prediction. The result also reveals strong spatial integrity and similarity of the observed and predicted maps. VegOut-UBN was evaluated and compared with the Standardized Precipitation Index (SPI) (derived from independent rainfall datasets from meteorological stations) at different aggregate periods and with a food security status map. The result was encouraging and indicative of the potential application of VegOut-UBN for drought monitoring and prediction. The VegOut-UBN model could be informative in decision-making processes and could contribute to the development of operational drought monitoring and predictive models for the UBN basin
Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: a systematic analysis from the Global Burden of Disease Study 2021
Background
Previous global analyses, with known underdiagnosis and single cause per death attribution systems, provide only a small insight into the suspected high population health effect of sickle cell disease. Completed as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, this study delivers a comprehensive global assessment of prevalence of sickle cell disease and mortality burden by age and sex for 204 countries and territories from 2000 to 2021.
Methods
We estimated cause-specific sickle cell disease mortality using standardised GBD approaches, in which each death is assigned to a single underlying cause, to estimate mortality rates from the International Classification of Diseases (ICD)-coded vital registration, surveillance, and verbal autopsy data. In parallel, our goal was to estimate a more accurate account of sickle cell disease health burden using four types of epidemiological data on sickle cell disease: birth incidence, age-specific prevalence, with-condition mortality (total deaths), and excess mortality (excess deaths). Systematic reviews, supplemented with ICD-coded hospital discharge and insurance claims data, informed this modelling approach. We employed DisMod-MR 2.1 to triangulate between these measures—borrowing strength from predictive covariates and across age, time, and geography—and generated internally consistent estimates of incidence, prevalence, and mortality for three distinct genotypes of sickle cell disease: homozygous sickle cell disease and severe sickle cell β-thalassaemia, sickle-haemoglobin C disease, and mild sickle cell β-thalassaemia. Summing the three models yielded final estimates of incidence at birth, prevalence by age and sex, and total sickle cell disease mortality, the latter of which was compared directly against cause-specific mortality estimates to evaluate differences in mortality burden assessment and implications for the Sustainable Development Goals (SDGs).
Findings
Between 2000 and 2021, national incidence rates of sickle cell disease were relatively stable, but total births of babies with sickle cell disease increased globally by 13·7% (95% uncertainty interval 11·1–16·5), to 515 000 (425 000–614 000), primarily due to population growth in the Caribbean and western and central sub-Saharan Africa. The number of people living with sickle cell disease globally increased by 41·4% (38·3–44·9), from 5·46 million (4·62–6·45) in 2000 to 7·74 million (6·51–9·2) in 2021. We estimated 34 400 (25 000–45 200) cause-specific all-age deaths globally in 2021, but total sickle cell disease mortality burden was nearly 11-times higher at 376 000 (303 000–467 000). In children younger than 5 years, there were 81 100 (58 800–108 000) deaths, ranking total sickle cell disease mortality as 12th (compared to 40th for cause-specific sickle cell disease mortality) across all causes estimated by the GBD in 2021.
Interpretation
Our findings show a strikingly high contribution of sickle cell disease to all-cause mortality that is not apparent when each death is assigned to only a single cause. Sickle cell disease mortality burden is highest in children, especially in countries with the greatest under-5 mortality rates. Without comprehensive strategies to address morbidity and mortality associated with sickle cell disease, attainment of SDG 3.1, 3.2, and 3.4 is uncertain. Widespread data gaps and correspondingly high uncertainty in the estimates highlight the urgent need for routine and sustained surveillance efforts, further research to assess the contribution of conditions associated with sickle cell disease, and widespread deployment of evidence-based prevention and treatment for those with sickle cell disease.publishedVersio
Correction: A Seroepidemiological Study of Serogroup A Meningococcal Infection in the African Meningitis Belt.
[This corrects the article DOI: 10.1371/journal.pone.0147928.]
High aboveground carbon stock of African tropical montane forests
Tropical forests store 40-50 per cent of terrestrial vegetation carbon(1). However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests(2). Owing to climatic and soil changes with increasing elevation(3), AGC stocks are lower in tropical montane forests compared with lowland forests(2). Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1-164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network(4) and about 70 per cent and 32 per cent higher than averages from plot networks in montane(2,5,6) and lowland(7) forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa(8). We find that the low stem density and high abundance of large trees of African lowland forests(4) is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse(9,10) and carbon-rich ecosystems. The aboveground carbon stock of a montane African forest network is comparable to that of a lowland African forest network and two-thirds higher than default values for these montane forests.Peer reviewe
Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000-2021: a systematic analysis from the Global Burden of Disease Study 2021
BACKGROUND: Previous global analyses, with known underdiagnosis and single cause per death attribution systems, provide only a small insight into the suspected high population health effect of sickle cell disease. Completed as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, this study delivers a comprehensive global assessment of prevalence of sickle cell disease and mortality burden by age and sex for 204 countries and territories from 2000 to 2021. METHODS: We estimated cause-specific sickle cell disease mortality using standardised GBD approaches, in which each death is assigned to a single underlying cause, to estimate mortality rates from the International Classification of Diseases (ICD)-coded vital registration, surveillance, and verbal autopsy data. In parallel, our goal was to estimate a more accurate account of sickle cell disease health burden using four types of epidemiological data on sickle cell disease: birth incidence, age-specific prevalence, with-condition mortality (total deaths), and excess mortality (excess deaths). Systematic reviews, supplemented with ICD-coded hospital discharge and insurance claims data, informed this modelling approach. We employed DisMod-MR 2.1 to triangulate between these measures-borrowing strength from predictive covariates and across age, time, and geography-and generated internally consistent estimates of incidence, prevalence, and mortality for three distinct genotypes of sickle cell disease: homozygous sickle cell disease and severe sickle cell β-thalassaemia, sickle-haemoglobin C disease, and mild sickle cell β-thalassaemia. Summing the three models yielded final estimates of incidence at birth, prevalence by age and sex, and total sickle cell disease mortality, the latter of which was compared directly against cause-specific mortality estimates to evaluate differences in mortality burden assessment and implications for the Sustainable Development Goals (SDGs). FINDINGS: Between 2000 and 2021, national incidence rates of sickle cell disease were relatively stable, but total births of babies with sickle cell disease increased globally by 13·7% (95% uncertainty interval 11·1-16·5), to 515 000 (425 000-614 000), primarily due to population growth in the Caribbean and western and central sub-Saharan Africa. The number of people living with sickle cell disease globally increased by 41·4% (38·3-44·9), from 5·46 million (4·62-6·45) in 2000 to 7·74 million (6·51-9·2) in 2021. We estimated 34 400 (25 000-45 200) cause-specific all-age deaths globally in 2021, but total sickle cell disease mortality burden was nearly 11-times higher at 376 000 (303 000-467 000). In children younger than 5 years, there were 81 100 (58 800-108 000) deaths, ranking total sickle cell disease mortality as 12th (compared to 40th for cause-specific sickle cell disease mortality) across all causes estimated by the GBD in 2021. INTERPRETATION: Our findings show a strikingly high contribution of sickle cell disease to all-cause mortality that is not apparent when each death is assigned to only a single cause. Sickle cell disease mortality burden is highest in children, especially in countries with the greatest under-5 mortality rates. Without comprehensive strategies to address morbidity and mortality associated with sickle cell disease, attainment of SDG 3.1, 3.2, and 3.4 is uncertain. Widespread data gaps and correspondingly high uncertainty in the estimates highlight the urgent need for routine and sustained surveillance efforts, further research to assess the contribution of conditions associated with sickle cell disease, and widespread deployment of evidence-based prevention and treatment for those with sickle cell disease. FUNDING: Bill & Melinda Gates Foundation
Global estimates on the number of people blind or visually impaired by cataract: a meta-analysis from 2000 to 2020
Background: To estimate global and regional trends from 2000 to 2020 of the number of persons visually impaired by cataract and their proportion of the total number of vision-impaired individuals. Methods: A systematic review and meta-analysis of published population studies and gray literature from 2000 to 2020 was carried out to estimate global and regional trends. We developed prevalence estimates based on modeled distance visual impairment and blindness due to cataract, producing location-, year-, age-, and sex-specific estimates of moderate to severe vision impairment (MSVI presenting visual acuity <6/18, ≥3/60) and blindness (presenting visual acuity <3/60). Estimates are age-standardized using the GBD standard population. Results: In 2020, among overall (all ages) 43.3 million blind and 295 million with MSVI, 17.0 million (39.6%) people were blind and 83.5 million (28.3%) had MSVI due to cataract blind 60% female, MSVI 59% female. From 1990 to 2020, the count of persons blind (MSVI) due to cataract increased by 29.7%(93.1%) whereas the age-standardized global prevalence of cataract-related blindness improved by −27.5% and MSVI increased by 7.2%. The contribution of cataract to the age-standardized prevalence of blindness exceeded the global figure only in South Asia (62.9%) and Southeast Asia and Oceania (47.9%). Conclusions: The number of people blind and with MSVI due to cataract has risen over the past 30 years, despite a decrease in the age-standardized prevalence of cataract. This indicates that cataract treatment programs have been beneficial, but population growth and aging have outpaced their impact. Growing numbers of cataract blind indicate that more, better-directed, resources are needed to increase global capacity for cataract surgery.</p