226 research outputs found

    Quantum critical behavior induced by Mn impurity in CuGeO3

    Full text link
    Results of high frequency (60-315 GHz) studies of ESR in CuGeO3 single crystals containing 0.9% of Mn impurity are reported. Quantitative EPR line shape analysis allowed concluding that low temperature magnetic susceptibility for T <40 K diverges following power law with the critical exponent 0.81 and therefore manifests onset of a quantum critical (QC) regime. We argue that transition into Griffiths phase occurs at TG~40 K and disorder produced by Mn impurity in quantum spin chains of CuGeO3 may lead to co-existence of the QC regime and spin-Peierls dimerisation.Comment: 2 pages, submitted to SCES05 proceeding

    Disorder driven quantum critical behavior in CuGeO3 doped with magnetic impurity

    Full text link
    For the CuGeO3 doped with 1% of Fe the quantum critical behavior in a wide temperature range 1-40 K is reported. The critical exponents for susceptibility along different crystallographic axes are determined: a=0.34 (B//a and B//c) and a=0.31 (B//b). New effect of the frequency dependence of the critical exponent is discussed.Comment: Submitted to SCES0

    Antiferro-quadrupole resonance in CeB6

    Full text link
    We report experimental observation of a new type of magnetic resonance caused by orbital ordering in a strongly correlated electronic system. Cavity measurements performed on CeB6 single crystals in a frequency range 60-100 GHz show that a crossing of the phase boundary TQ(B) between the antiferro-quadrupole and paramagnetic phases gives rise to development at T <TQ(B) of a magnetic resonance. The observed mode is gapless and correspond to g-factor 1.62.Comment: 2 pages, Submitted to SCES05 proceeding

    Magnetic resonance in cerium hexaboride caused by quadrupolar ordering

    Full text link
    Experimental evidence of the magnetic resonance in the antiferro-quadrupole phase of CeB6 is reported. We have shown that below orbital ordering temperature a new magnetic contribution from localized magnetic moments (LMM) emerge and gives rise to observed resonant phenomenon. This behaviour is hardly possible to expect in dense Kondo system, where LMM should vanish al low temperatures rather than emerge. From the other hand, in the quadrupole ordering concept, where magnetism of Ce magnetic ions is solely accounted, is difficult to explain splitting of magnetisation into components having different physical nature. Therefore an adequate theory explaining magnetic properties of CeB6 including magnetic resonance and orbital ordering appears on the agenda.Comment: 4 pages, Accepted paper for MISM05 proceeding
    • …
    corecore